Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Crystallographic Analysis and Mechanism of Thermoelastic Martensitic Transformation in Heusler Alloys with a Seven-Layer Martensite Structure

Authors: V. M. Gundyrev, V. I. Zel’dovich

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The lattice parameters of the matrix of modulated 14M martensite in the Ni51Mn24Ga25 and Ni63Al37 alloys are calculated. The mechanism of martensitic transformation in alloys with a seven-layer martensite structure is determined, which includes shear deformation of the austenite lattice in the initial L21 phase along the (112) plane in the \(\left[ {\bar {1}\bar {1}1} \right]\) direction and additional compressive and tensile deformations in three mutually perpendicular directions. The deformation of martensite with an invariant lattice takes place through the formation of bilayered twins that create a seven-layer modulation of the crystal structure of martensite. The crystallographic characteristics of the martensitic transformation are calculated.
Literature
1.
go back to reference A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559 (2003). CrossRef A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46, 559 (2003). CrossRef
2.
go back to reference H. D. Chopra, Ji. Chunhai, and V. V. Kokorin, “Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys,” Phys. Rev. B 61, No. 22. R14913–14915 (2000). CrossRef H. D. Chopra, Ji. Chunhai, and V. V. Kokorin, “Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys,” Phys. Rev. B 61, No. 22. R14913–14915 (2000). CrossRef
3.
go back to reference K. Ullakko, J. K. Huang, C. Kantner, R. C. O’handley, and V. V. Kokorin, “Large magnetic-field-induced strains in Ni 2MnGa single crystals,” Appl. Phys. Lett. 63, No. 13, 1966–1968 (1996). CrossRef K. Ullakko, J. K. Huang, C. Kantner, R. C. O’handley, and V. V. Kokorin, “Large magnetic-field-induced strains in Ni 2MnGa single crystals,” Appl. Phys. Lett. 63, No. 13, 1966–1968 (1996). CrossRef
4.
go back to reference A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett. 80, No. 10, 1746–1748 (2002). CrossRef A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, “Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase,” Appl. Phys. Lett. 80, No. 10, 1746–1748 (2002). CrossRef
5.
go back to reference B. M. Gundyrev and Yu. V. Kaletina, “Crystallographic analysis and mechanism of the martensitic transformation in the Heusler alloy Ni 47Mn 42In 11,” Phys. Met. Metallogr. 120, No. 11, 1097–1104 (2019). CrossRef B. M. Gundyrev and Yu. V. Kaletina, “Crystallographic analysis and mechanism of the martensitic transformation in the Heusler alloy Ni 47Mn 42In 11,” Phys. Met. Metallogr. 120, No. 11, 1097–1104 (2019). CrossRef
6.
go back to reference Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe, “Crystallography of stress-induced B2 → 7R martensitic transformation in a Ni–37.0 at % Al alloy,” Mater. Trans. JIM 33, 282–288 (1992). CrossRef Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe, “Crystallography of stress-induced B2 → 7R martensitic transformation in a Ni–37.0 at % Al alloy,” Mater. Trans. JIM 33, 282–288 (1992). CrossRef
7.
go back to reference V. V. Martynov, “X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni–Mn–Ga alloys,” J. Phys. IV (Paris) 5, 8–91 (1995) V. V. Martynov, “X-ray diffraction study of thermally and stress-induced phase transformations in single crystalline Ni–Mn–Ga alloys,” J. Phys. IV (Paris) 5, 8–91 (1995)
8.
go back to reference V. V. Martynov, K. Enami, L. G. Khandros, S. Nenno, and A. V. Tkachenko, “The structure of the martensitic phases formed in the 63.1 at. % Ni–Al under tension,” Fiz. Met. Metalloved. 55, No. 5, 982–989 (1983). V. V. Martynov, K. Enami, L. G. Khandros, S. Nenno, and A. V. Tkachenko, “The structure of the martensitic phases formed in the 63.1 at. % Ni–Al under tension,” Fiz. Met. Metalloved. 55, No. 5, 982–989 (1983).
9.
go back to reference V. M. Gundyrev and Yu. V. Kaletina, “X-Ray diffraction study of the martensite structure of the Ni 47Mn 42In 11 alloy” Phys. Met. Metallogr. 119, No. 10, 1018–1024 (2018). CrossRef V. M. Gundyrev and Yu. V. Kaletina, “X-Ray diffraction study of the martensite structure of the Ni 47Mn 42In 11 alloy” Phys. Met. Metallogr. 119, No. 10, 1018–1024 (2018). CrossRef
10.
go back to reference V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the B2 → B19' martensite transformation in titanium nickelide,” Bull. Russ. Acad. Sci.: Phys. 76, No. 1, 18–22 (2012). CrossRef V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the B2 → B19' martensite transformation in titanium nickelide,” Bull. Russ. Acad. Sci.: Phys. 76, No. 1, 18–22 (2012). CrossRef
11.
go back to reference V. M. Gundyrev and V. I. Zeldovich, “Crystallographic analysis of martensitic transformation in an iron-nickel alloy with twinned martensite,” Bull. Russ. Acad. Sci.: Phys. 77, No. 11, 1367–1372 (2013). CrossRef V. M. Gundyrev and V. I. Zeldovich, “Crystallographic analysis of martensitic transformation in an iron-nickel alloy with twinned martensite,” Bull. Russ. Acad. Sci.: Phys. 77, No. 11, 1367–1372 (2013). CrossRef
12.
go back to reference V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the FCC → BCC martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115, No. 10, 973–980 (2014). CrossRef V. M. Gundyrev and V. I. Zel’dovich, “Crystallographic analysis of the FCC → BCC martensitic transformation in high-carbon steel,” Phys. Met. Metallogr. 115, No. 10, 973–980 (2014). CrossRef
13.
go back to reference V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite,” Phys. Met. Metallogr. 117, No. 10, 1017–1027 (2016). CrossRef V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Crystallographic analysis of the martensitic transformation in medium-carbon steel with packet martensite,” Phys. Met. Metallogr. 117, No. 10, 1017–1027 (2016). CrossRef
14.
go back to reference V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Crystallographic analysis and mechanism of martensitic transformation in Fe alloys,” Phys. Met. Metallogr. 121, No. 11, 1045–1063 (2020). CrossRef V. M. Gundyrev, V. I. Zel’dovich, and V. M. Schastliv-tsev, “Crystallographic analysis and mechanism of martensitic transformation in Fe alloys,” Phys. Met. Metallogr. 121, No. 11, 1045–1063 (2020). CrossRef
15.
go back to reference M. S. Wechsler, D. S. Lieberman, and T. A. Read, “On the theory of the formation of martensite,” Trans. AIME 197, 1503–1515. M. S. Wechsler, D. S. Lieberman, and T. A. Read, “On the theory of the formation of martensite,” Trans. AIME 197, 1503–1515.
16.
go back to reference C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations (New York, 1964). C. M. Wayman, Introduction to the Crystallography of Martensitic Transformations (New York, 1964).
17.
go back to reference Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe, “Self-accomodation and morphology of 14M (7R) martensites in a Ni–37.0 at % Al alloy,” Mater. Sci. Eng., A 189, 181–199 (1994). CrossRef Y. Murakami, K. Otsuka, S. Hanada, and S. Watanabe, “Self-accomodation and morphology of 14M (7R) martensites in a Ni–37.0 at % Al alloy,” Mater. Sci. Eng., A 189, 181–199 (1994). CrossRef
Metadata
Title
Crystallographic Analysis and Mechanism of Thermoelastic Martensitic Transformation in Heusler Alloys with a Seven-Layer Martensite Structure
Authors
V. M. Gundyrev
V. I. Zel’dovich
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010069