Skip to main content
Top

2017 | OriginalPaper | Chapter

Current Progress in Bioprinting

Authors : Xiao-Fei Zhang, Ying Huang, Guifang Gao, Xiaofeng Cui

Published in: Advances in Biomaterials for Biomedical Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this chapter, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Altomare L, Riehle M, Gadegaard N et al (2010) Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs 33(8):535–543 Altomare L, Riehle M, Gadegaard N et al (2010) Microcontact printing of fibronectin on a biodegradable polymeric surface for skeletal muscle cell orientation. Int J Artif Organs 33(8):535–543
go back to reference An J, Teoh JEM, Suntornnond R et al (2015) Design and 3D printing of scaffolds and tissues. Engineering 1(2):261–268CrossRef An J, Teoh JEM, Suntornnond R et al (2015) Design and 3D printing of scaffolds and tissues. Engineering 1(2):261–268CrossRef
go back to reference Arealis G, Nikolaou VS (2015) Bone printing: new frontiers in the treatment of bone defects. Injury 46:S20–S22CrossRef Arealis G, Nikolaou VS (2015) Bone printing: new frontiers in the treatment of bone defects. Injury 46:S20–S22CrossRef
go back to reference Baptista PM, Orlando G, Mirmalek-Sani SH et al (2009) Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009:6526–6529 Baptista PM, Orlando G, Mirmalek-Sani SH et al (2009) Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009:6526–6529
go back to reference Bergemann C, Cornelsen M, Quade A et al (2016) Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation. Mater Sci Eng C Mater Biol Appl 59:514–523CrossRef Bergemann C, Cornelsen M, Quade A et al (2016) Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation. Mater Sci Eng C Mater Biol Appl 59:514–523CrossRef
go back to reference Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRef Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRef
go back to reference Brunello G, Sivolella S, Meneghello R et al (2016) Powder-based 3D printing for bone tissue engineering. Biotechnol Adv Brunello G, Sivolella S, Meneghello R et al (2016) Powder-based 3D printing for bone tissue engineering. Biotechnol Adv
go back to reference Buyukhatipoglu K, Chang R, Sun W et al (2010) Bioprinted nanoparticles for tissue engineering applications. Tissue Eng. Part C Methods 16:631–642CrossRef Buyukhatipoglu K, Chang R, Sun W et al (2010) Bioprinted nanoparticles for tissue engineering applications. Tissue Eng. Part C Methods 16:631–642CrossRef
go back to reference Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9:4CrossRef Chia HN, Wu BM (2015) Recent advances in 3D printing of biomaterials. J. Biol. Eng. 9:4CrossRef
go back to reference Choi WS, Ha D, Park S et al (2011) Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials 32:2500–2507CrossRef Choi WS, Ha D, Park S et al (2011) Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials 32:2500–2507CrossRef
go back to reference Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227CrossRef Cui X, Boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227CrossRef
go back to reference Cui X, Boland T, D’Lima DD et al (2012a) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155CrossRef Cui X, Boland T, D’Lima DD et al (2012a) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6(2):149–155CrossRef
go back to reference Cui X, Breitenkamp K, Finn MG et al (2012b) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312CrossRef Cui X, Breitenkamp K, Finn MG et al (2012b) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312CrossRef
go back to reference Cui X, Breitenkamp K, Lotz M et al (2012c) Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng 109(9):2357–2368CrossRef Cui X, Breitenkamp K, Lotz M et al (2012c) Synergistic action of fibroblast growth factor-2 and transforming growth factor-beta1 enhances bioprinted human neocartilage formation. Biotechnol Bioeng 109(9):2357–2368CrossRef
go back to reference Cui X, Gao G, Qiu Y (2013) Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 35(3):315–321CrossRef Cui X, Gao G, Qiu Y (2013) Accelerated myotube formation using bioprinting technology for biosensor applications. Biotechnol Lett 35(3):315–321CrossRef
go back to reference Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1(1):113–123CrossRef Derby B (2015) Additive manufacture of ceramics components by inkjet printing. Engineering 1(1):113–123CrossRef
go back to reference Detsch R, Schaefer S, Deisinger U et al (2011) In vitro: osteoclastic activity studies on surfaces of 3d printed calcium phosphate scaffolds. J Biomater Appl 26(3):359–380CrossRef Detsch R, Schaefer S, Deisinger U et al (2011) In vitro: osteoclastic activity studies on surfaces of 3d printed calcium phosphate scaffolds. J Biomater Appl 26(3):359–380CrossRef
go back to reference Di Bella C, Fosang A, Donati DM et al (2015) 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines. Front Surg 2:39CrossRef Di Bella C, Fosang A, Donati DM et al (2015) 3D bioprinting of cartilage for orthopedic surgeons: reading between the lines. Front Surg 2:39CrossRef
go back to reference Duan B, Hockaday LA, Kang KH et al (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Biomed. Mater. Res. 101:1255–1264CrossRef Duan B, Hockaday LA, Kang KH et al (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Biomed. Mater. Res. 101:1255–1264CrossRef
go back to reference Evans CH, Huard J (2015) Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol 11(4):234–242CrossRef Evans CH, Huard J (2015) Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol 11(4):234–242CrossRef
go back to reference Fedorovich NE, Alblas J, Hennink WE et al (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29(12):601–606CrossRef Fedorovich NE, Alblas J, Hennink WE et al (2011) Organ printing: the future of bone regeneration? Trends Biotechnol 29(12):601–606CrossRef
go back to reference Ferris CJ, Gilmore KG, Wallace GG et al (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97(10):4243–4258CrossRef Ferris CJ, Gilmore KG, Wallace GG et al (2013) Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol 97(10):4243–4258CrossRef
go back to reference Gao G, Schilling AF, Hubbell K et al (2015a) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355CrossRef Gao G, Schilling AF, Hubbell K et al (2015a) Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnol Lett 37(11):2349–2355CrossRef
go back to reference Gao G, Schilling AF, Yonezawa T et al (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9(10):1304–1311CrossRef Gao G, Schilling AF, Yonezawa T et al (2014) Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells. Biotechnol J 9(10):1304–1311CrossRef
go back to reference Gao G, Yonezawa T, Hubbell K et al (2015b) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577CrossRef Gao G, Yonezawa T, Hubbell K et al (2015b) Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging. Biotechnol J 10(10):1568–1577CrossRef
go back to reference Gruene M, Pflaum M, Deiwick A et al (2011) Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 3(1):015005CrossRef Gruene M, Pflaum M, Deiwick A et al (2011) Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 3(1):015005CrossRef
go back to reference Guillemot F, Souquet A, Catros S et al (2010a) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond.) 5:507–515CrossRef Guillemot F, Souquet A, Catros S et al (2010a) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine (Lond.) 5:507–515CrossRef
go back to reference Guillemot F, Souquet A, Catros S et al (2010b) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6(7):2494–2500CrossRef Guillemot F, Souquet A, Catros S et al (2010b) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6(7):2494–2500CrossRef
go back to reference Hockaday LA, Kang KH, Colangelo NW et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005CrossRef Hockaday LA, Kang KH, Colangelo NW et al (2012) Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4(3):035005CrossRef
go back to reference Hung KC, Tseng CS, Dai LG et al (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83:156–168CrossRef Hung KC, Tseng CS, Dai LG et al (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83:156–168CrossRef
go back to reference Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463CrossRef Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463CrossRef
go back to reference Ihalainen P, Maattanen A, Sandler N (2015) Printing technologies for biomolecule and cell-based applications. Int J Pharm 494(2):585–592CrossRef Ihalainen P, Maattanen A, Sandler N (2015) Printing technologies for biomolecule and cell-based applications. Int J Pharm 494(2):585–592CrossRef
go back to reference Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotechnol Adv 33(8):1503–1521CrossRef Jana S, Lerman A (2015) Bioprinting a cardiac valve. Biotechnol Adv 33(8):1503–1521CrossRef
go back to reference Johnson BN, Lancaster KZ, Zhen G et al (2015) 3D printed anatomical nerve regeneration pathways. Adv Funct Mater 25(39):6205–6217CrossRef Johnson BN, Lancaster KZ, Zhen G et al (2015) 3D printed anatomical nerve regeneration pathways. Adv Funct Mater 25(39):6205–6217CrossRef
go back to reference Kesti M, Muller M, Becher J et al (2015) A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 11:162–172CrossRef Kesti M, Muller M, Becher J et al (2015) A versatile bioink for three-dimensional printing of cellular scaffolds based on thermally and photo-triggered tandem gelation. Acta Biomater 11:162–172CrossRef
go back to reference Kim J, Mcbride S, Tellis B et al (2012) Rapid-prototyped plga/β-tcp/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4(2):25003–25013(25011) Kim J, Mcbride S, Tellis B et al (2012) Rapid-prototyped plga/β-tcp/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Biofabrication 4(2):25003–25013(25011)
go back to reference Koch L, Deiwick A, Schlie S et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863CrossRef Koch L, Deiwick A, Schlie S et al (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863CrossRef
go back to reference Koch L, Gruene M, Unger C et al (2013) Laser assisted cell printing. Curr Pharm Biotechnol 14:91–97 Koch L, Gruene M, Unger C et al (2013) Laser assisted cell printing. Curr Pharm Biotechnol 14:91–97
go back to reference Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRef Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRef
go back to reference Kumar A, Mandal S, Barui S et al (2016) Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater Sci Eng: R: Rep 103:1–39CrossRef Kumar A, Mandal S, Barui S et al (2016) Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Mater Sci Eng: R: Rep 103:1–39CrossRef
go back to reference Kundu J, Shim JH, Jang J et al (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297CrossRef Kundu J, Shim JH, Jang J et al (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297CrossRef
go back to reference Lee JH, Gu Y, Wang H et al (2012) Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials 33(4):999–1006CrossRef Lee JH, Gu Y, Wang H et al (2012) Microfluidic 3D bone tissue model for high-throughput evaluation of wound-healing and infection-preventing biomaterials. Biomaterials 33(4):999–1006CrossRef
go back to reference Lee JS, Hong JM, Jung JW et al (2014a) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103CrossRef Lee JS, Hong JM, Jung JW et al (2014a) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103CrossRef
go back to reference Lee JW, Kim JY, Cho DW (2010a) Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells 3:85–95CrossRef Lee JW, Kim JY, Cho DW (2010a) Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells 3:85–95CrossRef
go back to reference Lee V, Singh G, Trasatti JP et al (2014b) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484CrossRef Lee V, Singh G, Trasatti JP et al (2014b) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484CrossRef
go back to reference Lee W, Lee V, Polio S et al (2010b) On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 105(6):1178–1186 Lee W, Lee V, Polio S et al (2010b) On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng 105(6):1178–1186
go back to reference Lopes MS, Jardini AL, Filho RM (2012) Poly (lactic acid) production for tissue engineering applications. Procedia Eng 42(4):1402–1413CrossRef Lopes MS, Jardini AL, Filho RM (2012) Poly (lactic acid) production for tissue engineering applications. Procedia Eng 42(4):1402–1413CrossRef
go back to reference Lozano R, Stevens L, Thompson BC et al (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273CrossRef Lozano R, Stevens L, Thompson BC et al (2015) 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 67:264–273CrossRef
go back to reference Lu HH, Subramony SD, Boushell MK et al (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154CrossRef Lu HH, Subramony SD, Boushell MK et al (2010) Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng 38(6):2142–2154CrossRef
go back to reference Mandrycky C, Wang Z, Kim K et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434CrossRef Mandrycky C, Wang Z, Kim K et al (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434CrossRef
go back to reference Markstedt K, Mantas A, Tournier I et al (2015) 3d bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496CrossRef Markstedt K, Mantas A, Tournier I et al (2015) 3d bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496CrossRef
go back to reference Marx V (2015) Tissue engineering: organs from the lab. Nature 522(7556):373–377CrossRef Marx V (2015) Tissue engineering: organs from the lab. Nature 522(7556):373–377CrossRef
go back to reference McCormick F, Harris JD, Abrams GD et al (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30(2):222–226CrossRef McCormick F, Harris JD, Abrams GD et al (2014) Trends in the surgical treatment of articular cartilage lesions in the United States: an analysis of a large private-payer database over a period of 8 years. Arthroscopy 30(2):222–226CrossRef
go back to reference Merceron TK, Burt M, Seol YJ et al (2015) A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 7(3):035003CrossRef Merceron TK, Burt M, Seol YJ et al (2015) A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 7(3):035003CrossRef
go back to reference Michael S, Sorg H, Peck CT et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8(3):e57741CrossRef Michael S, Sorg H, Peck CT et al (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS ONE 8(3):e57741CrossRef
go back to reference Minas T (2012) A primer in cartilage repair. J Bone Joint Surg Br 94 (11 Suppl A):141–146 Minas T (2012) A primer in cartilage repair. J Bone Joint Surg Br 94 (11 Suppl A):141–146
go back to reference Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673CrossRef Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673CrossRef
go back to reference Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174CrossRef Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174CrossRef
go back to reference Mohamed KR, El-Rashidy ZM, Salama (2011) In vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int 37 (8):3265–3271 Mohamed KR, El-Rashidy ZM, Salama (2011) In vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceram Int 37 (8):3265–3271
go back to reference Mota C, Puppi D, Chiellini F et al (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9(3):174–190CrossRef Mota C, Puppi D, Chiellini F et al (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9(3):174–190CrossRef
go back to reference Mourino V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7(43):209–227CrossRef Mourino V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7(43):209–227CrossRef
go back to reference Munaz A, Vadivelu RK, St. John J et al (2016) Three-dimensional printing of biological matters. J Sci: Adv Mater Devices 1(1):1–17 Munaz A, Vadivelu RK, St. John J et al (2016) Three-dimensional printing of biological matters. J Sci: Adv Mater Devices 1(1):1–17
go back to reference Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRef Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRef
go back to reference Nemeth CL, Janebodin K, Yuan AE et al (2014) Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A 20(21–22):2817–2829CrossRef Nemeth CL, Janebodin K, Yuan AE et al (2014) Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A 20(21–22):2817–2829CrossRef
go back to reference Ng WL, Wang S, Yeong WY et al (2016) Skin bioprinting: impending reality or fantasy? Trends Biotechnol Ng WL, Wang S, Yeong WY et al (2016) Skin bioprinting: impending reality or fantasy? Trends Biotechnol
go back to reference Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917CrossRef Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917CrossRef
go back to reference Owens CM, Marga F, Forgacs G et al (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5(4):045007CrossRef Owens CM, Marga F, Forgacs G et al (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5(4):045007CrossRef
go back to reference Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today
go back to reference Pateman CJ, Harding AJ, Glen A et al (2015) Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49:77–89CrossRef Pateman CJ, Harding AJ, Glen A et al (2015) Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49:77–89CrossRef
go back to reference Pati F, Ha DH, Jang J et al (2015a) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175CrossRef Pati F, Ha DH, Jang J et al (2015a) Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials 62:164–175CrossRef
go back to reference Pati F, Song TH, Rijal G et al (2015b) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241CrossRef Pati F, Song TH, Rijal G et al (2015b) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241CrossRef
go back to reference Peele BN, Wallin TJ, Zhao H et al (2015) 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir Biomim 10(5):055003CrossRef Peele BN, Wallin TJ, Zhao H et al (2015) 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspir Biomim 10(5):055003CrossRef
go back to reference Phillippi JA, Miller E, Weiss L et al (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134CrossRef Phillippi JA, Miller E, Weiss L et al (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134CrossRef
go back to reference Pulieri E, Chiono V, Ciardelli G (2008) Chitosan/gelatin blends for biomedical applications. J Biomed Mater Res, Part A 86A(2):311–322CrossRef Pulieri E, Chiono V, Ciardelli G (2008) Chitosan/gelatin blends for biomedical applications. J Biomed Mater Res, Part A 86A(2):311–322CrossRef
go back to reference Radenkovic D, Solouk A, Seifalian A (2016) Personalized development of human organs using 3D printing technology. Med Hypotheses 87:30–33CrossRef Radenkovic D, Solouk A, Seifalian A (2016) Personalized development of human organs using 3D printing technology. Med Hypotheses 87:30–33CrossRef
go back to reference Reichert JC, Saifzadeh S, Wullschleger ME et al (2009) The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30(12):2149–2163CrossRef Reichert JC, Saifzadeh S, Wullschleger ME et al (2009) The challenge of establishing preclinical models for segmental bone defect research. Biomaterials 30(12):2149–2163CrossRef
go back to reference Rezende RA, Kasyanov V, Mironov V et al (2015) Organ Printing as an Information Technology. Procedia Eng 110:151–158CrossRef Rezende RA, Kasyanov V, Mironov V et al (2015) Organ Printing as an Information Technology. Procedia Eng 110:151–158CrossRef
go back to reference Seitz H, Rieder W, Irsen S et al (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2):782–788CrossRef Seitz H, Rieder W, Irsen S et al (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74(2):782–788CrossRef
go back to reference Shafiee A, Atala A (2016) Printing Technologies for Medical Applications. Trends Mol Med 22(3):254–265CrossRef Shafiee A, Atala A (2016) Printing Technologies for Medical Applications. Trends Mol Med 22(3):254–265CrossRef
go back to reference Sivolella S, Biagi MD, Brunello G et al (2013) Delivery systems and role of growth factors for alveolar bone regeneration in dentistry. J Phys Chem 83(7):869–873 Sivolella S, Biagi MD, Brunello G et al (2013) Delivery systems and role of growth factors for alveolar bone regeneration in dentistry. J Phys Chem 83(7):869–873
go back to reference Skardal A, Mack D, Kapetanovic E et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802CrossRef Skardal A, Mack D, Kapetanovic E et al (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl Med 1(11):792–802CrossRef
go back to reference Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24):6173–6181CrossRef Skardal A, Zhang J, Prestwich GD (2010) Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials 31(24):6173–6181CrossRef
go back to reference Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138CrossRef Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138CrossRef
go back to reference Storrie H, Mooney DJ (2006) Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev 58(4):500–514CrossRef Storrie H, Mooney DJ (2006) Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev 58(4):500–514CrossRef
go back to reference Tirella A, Orsini A, Vozzi G et al (2009) A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 1(4):251–260CrossRef Tirella A, Orsini A, Vozzi G et al (2009) A phase diagram for microfabrication of geometrically controlled hydrogel scaffolds. Biofabrication 1(4):251–260CrossRef
go back to reference Tse C, Whiteley R, Yu T et al (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017CrossRef Tse C, Whiteley R, Yu T et al (2016) Inkjet printing Schwann cells and neuronal analogue NG108-15 cells. Biofabrication 8(1):015017CrossRef
go back to reference Umezu S, Suzuki H, Kawamoto H (2005) Droplet formation and diropping position control in electrostatic inkjet phenomena. NIP & Digital Fabrication conference:283–286 Umezu S, Suzuki H, Kawamoto H (2005) Droplet formation and diropping position control in electrostatic inkjet phenomena. NIP & Digital Fabrication conference:283–286
go back to reference Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–183CrossRef Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–183CrossRef
go back to reference Xiong R, Zhang Z, Huang Y (2015) Identification of optimal printing conditions for laser printing of alginate tubular constructs. J Manuf Process 20:450–455CrossRef Xiong R, Zhang Z, Huang Y (2015) Identification of optimal printing conditions for laser printing of alginate tubular constructs. J Manuf Process 20:450–455CrossRef
go back to reference Xu T, Baicu C, Aho M et al (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Cancer Res 74(2):1–10 Xu T, Baicu C, Aho M et al (2009) Fabrication and characterization of bio-engineered cardiac pseudo tissues. Cancer Res 74(2):1–10
go back to reference Xu T, Binder KW, Albanna MZ et al (2013a) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001CrossRef Xu T, Binder KW, Albanna MZ et al (2013a) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001CrossRef
go back to reference Xu T, Zhao W, Zhu JM et al (2013b) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139CrossRef Xu T, Zhao W, Zhu JM et al (2013b) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139CrossRef
go back to reference Yanez M, Rincon J, Dones A et al (2015) In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A 21(1–2):224–233CrossRef Yanez M, Rincon J, Dones A et al (2015) In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds. Tissue Eng Part A 21(1–2):224–233CrossRef
go back to reference Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15(2):127–141CrossRef Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15(2):127–141CrossRef
go back to reference Yao Q, Wei B, Guo Y et al (2015) Design, construction and mechanical testing of digital 3d anatomical data-based PCL- HA bone tissue engineering scaffold. J Mater Sci Mater Med 26(1):1–9 Yao Q, Wei B, Guo Y et al (2015) Design, construction and mechanical testing of digital 3d anatomical data-based PCL- HA bone tissue engineering scaffold. J Mater Sci Mater Med 26(1):1–9
go back to reference Zhu W, Ma X, Gou M et al (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112CrossRef Zhu W, Ma X, Gou M et al (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112CrossRef
Metadata
Title
Current Progress in Bioprinting
Authors
Xiao-Fei Zhang
Ying Huang
Guifang Gao
Xiaofeng Cui
Copyright Year
2017
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-3328-5_6

Premium Partners