Skip to main content
Top
Published in: Neural Computing and Applications 1/2014

01-01-2014 | ICONIP 2012

Current–voltage modeling of graphene-based DNA sensor

Authors: H. Karimi Feiz Abadi, R. Yusof, S. Maryam Eshrati, S. D. Naghib, M. Rahmani, M. Ghadiri, E. Akbari, M. T. Ahmadi

Published in: Neural Computing and Applications | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Graphene is considered as an excellent biosensing material due to its outstanding and unique electronic properties such as providing large area detection, ultra-high mobility and ambipolar field-effect characteristic. In this paper, general conductance model of DNA sensor-based graphene is obtained, and the electrical performance of nanostructured graphene-based DNA sensor is evaluated by the current–voltage characteristic. As a result, by increasing the complementary DNA concentration, the drain current is going toward higher amounts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23(19):2221. doi:10.1002/adma.201100014 CrossRef Myung S, Solanki A, Kim C, Park J, Kim KS, Lee K-B (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23(19):2221. doi:10.​1002/​adma.​201100014 CrossRef
4.
go back to reference Qiu Y, Qu X, Dong J, Ai S, Han R (2011) Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater 190(1–3):480–485. doi:10.1016/j.jhazmat.2011.03.071 CrossRef Qiu Y, Qu X, Dong J, Ai S, Han R (2011) Electrochemical detection of DNA damage induced by acrylamide and its metabolite at the graphene-ionic liquid-Nafion modified pyrolytic graphite electrode. J Hazard Mater 190(1–3):480–485. doi:10.​1016/​j.​jhazmat.​2011.​03.​071 CrossRef
6.
go back to reference Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett 9(9):3318–3322. doi:10.1021/nl901596m CrossRef Ohno Y, Maehashi K, Yamashiro Y, Matsumoto K (2009) Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett 9(9):3318–3322. doi:10.​1021/​nl901596m CrossRef
7.
go back to reference Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737. doi:10.1039/c1an15610a CrossRef Lin L, Liu Y, Tang L, Li J (2011) Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst 136(22):4732–4737. doi:10.​1039/​c1an15610a CrossRef
8.
go back to reference Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. Acs Appl Mater Interfaces 3(7):2607–2615. doi:10.1021/am200428v CrossRef Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. Acs Appl Mater Interfaces 3(7):2607–2615. doi:10.​1021/​am200428v CrossRef
9.
10.
go back to reference Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655CrossRef
11.
go back to reference Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8(2):586–590. doi:10.1021/nl072949q CrossRef Welsher K, Liu Z, Daranciang D, Dai H (2008) Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules. Nano Lett 8(2):586–590. doi:10.​1021/​nl072949q CrossRef
12.
go back to reference Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRef Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5):338–342CrossRef
13.
go back to reference Nilsson J, Neto AHC, Guinea F, Peres NMR (2007) Transmission through a biased graphene bilayer barrier. Phys Rev B (Condens Matter Mater Phys) 76(16):165416CrossRef Nilsson J, Neto AHC, Guinea F, Peres NMR (2007) Transmission through a biased graphene bilayer barrier. Phys Rev B (Condens Matter Mater Phys) 76(16):165416CrossRef
14.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef
15.
go back to reference Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20(18):3117–3124. doi:10.1002/adfm.201000724 CrossRef Dankerl M, Hauf MV, Lippert A, Hess LH, Birner S, Sharp ID, Mahmood A, Mallet P, Veuillen J-Y, Stutzmann M, Garrido JA (2010) Graphene solution-gated field-effect transistor array for sensing applications. Adv Funct Mater 20(18):3117–3124. doi:10.​1002/​adfm.​201000724 CrossRef
16.
go back to reference Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362. doi:10.1039/c1jm11436k CrossRef Huang Y, Dong X, Liu Y, Li L-J, Chen P (2011) Graphene-based biosensors for detection of bacteria and their metabolic activities. J Mater Chem 21(33):12358–12362. doi:10.​1039/​c1jm11436k CrossRef
17.
go back to reference Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622CrossRef Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622CrossRef
18.
go back to reference Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801CrossRef Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459):1801CrossRef
19.
go back to reference Snow E, Perkins F, Houser E, Badescu S, Reinecke T (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717):1942CrossRef Snow E, Perkins F, Houser E, Badescu S, Reinecke T (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307(5717):1942CrossRef
20.
go back to reference Shi YB, Xiang JJ, Feng QH, Hu ZP, Zhang HQ, Guo JY (2006) Binary channel SAW mustard gas sensor based on PdPc(0.3)PANI(0.7)hybrid sensitive film. In: Tan J (ed) 4th International symposium on instrumentation science and technology, vol 48. J Phys Conf Ser. pp 292–297. doi:10.1088/1742-6596/48/l/054 Shi YB, Xiang JJ, Feng QH, Hu ZP, Zhang HQ, Guo JY (2006) Binary channel SAW mustard gas sensor based on PdPc(0.3)PANI(0.7)hybrid sensitive film. In: Tan J (ed) 4th International symposium on instrumentation science and technology, vol 48. J Phys Conf Ser. pp 292–297. doi:10.​1088/​1742-6596/​48/​l/​054
21.
go back to reference Shi Y, Dong X, Chen P, Wang J, Li LJ (2009) Effective doping of single-layer graphene from underlying SiO_ 2 substrates. Phys Rev B 79(11):115402CrossRef Shi Y, Dong X, Chen P, Wang J, Li LJ (2009) Effective doping of single-layer graphene from underlying SiO_ 2 substrates. Phys Rev B 79(11):115402CrossRef
22.
go back to reference Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A (2008) Molecular doping of graphene. Nano Lett 8(1):173–177CrossRef Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A (2008) Molecular doping of graphene. Nano Lett 8(1):173–177CrossRef
23.
go back to reference Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009) Doping single-layer graphene with aromatic molecules. Small 5(12):1422–1426CrossRef Dong X, Fu D, Fang W, Shi Y, Chen P, Li LJ (2009) Doping single-layer graphene with aromatic molecules. Small 5(12):1422–1426CrossRef
25.
go back to reference Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 103(4):921CrossRef Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci USA 103(4):921CrossRef
26.
go back to reference Choi J, Choi WM, Hong BH Graphene used for device and graphene sheet, comprises etched edge portion comprising functional group of carbonyl, carboxy, hydroxy, formyl and/or oxycarbonyl. US2010178464-A1; KR2010083954-A Choi J, Choi WM, Hong BH Graphene used for device and graphene sheet, comprises etched edge portion comprising functional group of carbonyl, carboxy, hydroxy, formyl and/or oxycarbonyl. US2010178464-A1; KR2010083954-A
27.
go back to reference Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35CrossRef
28.
go back to reference Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516CrossRef Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516CrossRef
29.
go back to reference Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598CrossRef Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C (2010) A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun 46(15):2596–2598CrossRef
30.
go back to reference Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25(10):2379–2383. doi:10.1016/j.bios.2010.03.009 CrossRef Zhong Z, Wu W, Wang D, Wang D, Shan J, Qing Y, Zhang Z (2010) Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: carcinoembryonic antigen as a model. Biosens Bioelectron 25(10):2379–2383. doi:10.​1016/​j.​bios.​2010.​03.​009 CrossRef
31.
go back to reference Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995. doi:10.1021/ac100036p CrossRef Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82(7):2989–2995. doi:10.​1021/​ac100036p CrossRef
32.
go back to reference Koochi A, Kazemi A, Abadyan M (2011) Simulating deflection and determining stable length of freestanding carbon nanotube probe/sensor in the vicinity of graphene layers using a nanoscale continuum model. Nano 6(5):419–429. doi:10.1142/s1793292011002731 CrossRef Koochi A, Kazemi A, Abadyan M (2011) Simulating deflection and determining stable length of freestanding carbon nanotube probe/sensor in the vicinity of graphene layers using a nanoscale continuum model. Nano 6(5):419–429. doi:10.​1142/​s179329201100273​1 CrossRef
33.
go back to reference Chen F, Qing Q, Xia J, Tao N (2010) Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. Chem Asian J 5(10):2144–2153. doi:10.1002/asia.201000252 CrossRef Chen F, Qing Q, Xia J, Tao N (2010) Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications. Chem Asian J 5(10):2144–2153. doi:10.​1002/​asia.​201000252 CrossRef
35.
go back to reference Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater :4 Pages Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater :4 Pages
36.
go back to reference Datta S (2002) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge Datta S (2002) Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge
37.
go back to reference Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater 2010:12CrossRef Ahmadi MT, Johari Z, Amin NA, Fallahpour AH, Ismail R (2010) Graphene nanoribbon conductance model in parabolic band structure. J Nanomater 2010:12CrossRef
38.
go back to reference Peres NMR, Neto AHC, Guinea F (2006) Conductance quantization in mesoscopic graphene. Phys Rev B 73(19):195411–195419CrossRef Peres NMR, Neto AHC, Guinea F (2006) Conductance quantization in mesoscopic graphene. Phys Rev B 73(19):195411–195419CrossRef
39.
go back to reference Gunlycke D, Areshkin D, White C (2007) Semiconducting graphene nanostrips with edge disorder. Appl Phys Lett 90:142104CrossRef Gunlycke D, Areshkin D, White C (2007) Semiconducting graphene nanostrips with edge disorder. Appl Phys Lett 90:142104CrossRef
40.
go back to reference Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Molecular doping of graphene. Nano Lett 8 Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein AI (2008) Molecular doping of graphene. Nano Lett 8
41.
go back to reference Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649. doi:10.1002/adma.200903645 CrossRef Dong X, Shi Y, Huang W, Chen P, Li L-J (2010) Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater 22(14):1649. doi:10.​1002/​adma.​200903645 CrossRef
42.
go back to reference Passlack M (2008) III–V metal-oxide-semiconductor technology. 2008 IEEE 20th international conference on indium phosphide and related materials (Iprm):59–59 Passlack M (2008) III–V metal-oxide-semiconductor technology. 2008 IEEE 20th international conference on indium phosphide and related materials (Iprm):59–59
43.
go back to reference Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New YorkCrossRef Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, New YorkCrossRef
44.
go back to reference Rahmani M, Ahmadi MT, HKF A, Kiani MJ, Akbari E, Ismail R (2013) Analytical modeling of monolayer graphene-based NO2 sensor. Sensor Lett 11:270–275CrossRef Rahmani M, Ahmadi MT, HKF A, Kiani MJ, Akbari E, Ismail R (2013) Analytical modeling of monolayer graphene-based NO2 sensor. Sensor Lett 11:270–275CrossRef
Metadata
Title
Current–voltage modeling of graphene-based DNA sensor
Authors
H. Karimi Feiz Abadi
R. Yusof
S. Maryam Eshrati
S. D. Naghib
M. Rahmani
M. Ghadiri
E. Akbari
M. T. Ahmadi
Publication date
01-01-2014
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 1/2014
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-013-1464-1

Other articles of this Issue 1/2014

Neural Computing and Applications 1/2014 Go to the issue

Premium Partner