Skip to main content
Top

2022 | OriginalPaper | Chapter

2. Cutting Force Modeling: Genesis, State of the Art, and Development

Author : Viktor P. Astakhov

Published in: Mechanical and Industrial Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter gives a historical prospective of the origin and developments of empirical equations for cutting force in the manner never presented before. It is shown that the Wiebe formula published in 1858 is still in wide use today in many research and practical applications including cutting tool manufacturers’ technical guides/catalogs. The chapter analyses the historical development of the formula for the cutting force from 1858 to the preset. The foundation of the so-called mechanistic approach in metal cutting is considered. It is discussed that there are actually two considerably different mechanistic approaches used today. Although both include the use of the cutting force coefficient, the way these coefficients are determined through numerous cutting tests are considerably different. The origin, essence, and drawbacks of both approaches are analyzed in great details. The chapter argues that no further progress in meatal cutting in terms of increasing its efficiency can be made if the known approach are used. The chapter suggests that at present stage of development, finite element method (FEM) modeling is one of feasible alternative to pure experimental studies in metal cutting. The problems to be addressed in FEM simulation in metal cutting as the proper model of metal cutting, relevant constitutive model of work material behavior, and contact conditions at the chip-rake face and workpiece-flank face interfaces are revealed and the feasible ways of their resolution are suggested discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
It is interesting to point out that all the papers by Friedrich on metal cutting and on gears start with the word “Ueber” (about).
 
2
Arguing with Nicolson about the influence of the (uncut) chip thickness, Taylor wrote “We have gone to great length in the paper to make it clear that it is the thickness of the chip which is the main factor, in allowing high cutting speeds for tools with broad cutting edges. And yet, Mr. Nicolson claims theta neither the thickness of the chip not the shape of the cutting edge of the tool need to be particularly considered in the problem”.
 
Literature
1.
go back to reference Astakhov VP (2014) Drills: science and technology of advanced operations. CRC Press, Boca Raton, FL Astakhov VP (2014) Drills: science and technology of advanced operations. CRC Press, Boca Raton, FL
2.
go back to reference Astakhov VP, Outeiro J (2019) Importance of temperature in metal cutting and its proper measurement/modeling. In: Davim PJ (ed) Measurement in machining and tribology. Springer, London, pp 1–47 Astakhov VP, Outeiro J (2019) Importance of temperature in metal cutting and its proper measurement/modeling. In: Davim PJ (ed) Measurement in machining and tribology. Springer, London, pp 1–47
3.
go back to reference Wiebe FKH (1885) Die Maschinen-Baumaterialien Und Deren Bearbeitung. Kessinger Publishing, LLC, Berlin (reprint 2010) Wiebe FKH (1885) Die Maschinen-Baumaterialien Und Deren Bearbeitung. Kessinger Publishing, LLC, Berlin (reprint 2010)
4.
go back to reference Time I (1870) Resistance of metals and wood to cutting. Dermacow Press House, St. Petersbourg, Russia (in Russian) Time I (1870) Resistance of metals and wood to cutting. Dermacow Press House, St. Petersbourg, Russia (in Russian)
5.
go back to reference Zvorykin KA (1893) On the force and energy needed to separate the chip from the workpiece (in Russian). Russian Typo-Litography, Moscow, pp 57–96 Zvorykin KA (1893) On the force and energy needed to separate the chip from the workpiece (in Russian). Russian Typo-Litography, Moscow, pp 57–96
6.
go back to reference Merchant ME (1944) Basic mechanics of metal cutting process. J Appl Mech 11:A168–A175CrossRef Merchant ME (1944) Basic mechanics of metal cutting process. J Appl Mech 11:A168–A175CrossRef
7.
go back to reference Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275 Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16:267–275
8.
go back to reference Backer WR, Marshall ER, Shaw MC (1952) Size effect in metal cutting. Trans Am Soc Mech Eng 74:61–72 Backer WR, Marshall ER, Shaw MC (1952) Size effect in metal cutting. Trans Am Soc Mech Eng 74:61–72
9.
go back to reference Taylor FW (1907) On the art of cutting metals. Trans ASME 28:70–350 Taylor FW (1907) On the art of cutting metals. Trans ASME 28:70–350
10.
go back to reference Boston OW (1926) The elements of metal cutting. Ann Arbor, MI: University of Michigan Press Boston OW (1926) The elements of metal cutting. Ann Arbor, MI: University of Michigan Press
11.
go back to reference Nicolson JT (1904) Experiments with lathe-tool dynamometer. Trans ASME 23:883–935 Nicolson JT (1904) Experiments with lathe-tool dynamometer. Trans ASME 23:883–935
12.
go back to reference Okoshi M, Fukui S (1933) Researshes on the cutting action of planning tool, by microkinetographic, photoelastic and piezoelectric methods. Sci Papaes Inst Phys Chem Res 22:97–166 Okoshi M, Fukui S (1933) Researshes on the cutting action of planning tool, by microkinetographic, photoelastic and piezoelectric methods. Sci Papaes Inst Phys Chem Res 22:97–166
13.
go back to reference Bricks AA (1896) Metal cutting (planing). MM Stasucevich Publ. House, St.Petersburg Bricks AA (1896) Metal cutting (planing). MM Stasucevich Publ. House, St.Petersburg
14.
go back to reference Kronenberg M (1923) Grundzüge der Zerspanungslehre. Springer, Berlin Kronenberg M (1923) Grundzüge der Zerspanungslehre. Springer, Berlin
15.
go back to reference Kronenberg M (1966) Machining science and application: theory and practice for operation and development of machining processes. Pergamon Press, Oxford, New York Kronenberg M (1966) Machining science and application: theory and practice for operation and development of machining processes. Pergamon Press, Oxford, New York
16.
go back to reference Friedrich H (1909) Ueber den Schnittwiderstand bei der Bearbeitung der Metalle durch Abheben von Spänen (in German). Z VDI 58(23):860–866 Friedrich H (1909) Ueber den Schnittwiderstand bei der Bearbeitung der Metalle durch Abheben von Spänen (in German). Z VDI 58(23):860–866
17.
go back to reference Friedrich H (1930) Ueber die Zerspanungstheorie (in German). Maschinenbau 2:47–51 Friedrich H (1930) Ueber die Zerspanungstheorie (in German). Maschinenbau 2:47–51
18.
go back to reference Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford Zorev NN (1966) Metal cutting mechanics. Pergamon Press, Oxford
19.
go back to reference Ripper W, Burley GW (1913) Cutting power of lathe turning tools. Proc Inst Mech Eng 85:1067–1210 Ripper W, Burley GW (1913) Cutting power of lathe turning tools. Proc Inst Mech Eng 85:1067–1210
20.
go back to reference Hippler W (1918) Die Dreherei und ihre Werkzeuge: in der neuzeitlichen Betriebsführung (in German). Springer, Berlin Hippler W (1918) Die Dreherei und ihre Werkzeuge: in der neuzeitlichen Betriebsführung (in German). Springer, Berlin
21.
go back to reference Hippler W (1923) Die Dreherei und ihre Werkzeuge: in der neuzeitlichen Betriebsführung (in German). 3rd ed, vol 1. Julius Springer, Berlin Hippler W (1923) Die Dreherei und ihre Werkzeuge: in der neuzeitlichen Betriebsführung (in German). 3rd ed, vol 1. Julius Springer, Berlin
22.
go back to reference Klopstock H (1923) Untersuchung der Dreharbeit. Julius Springer, Berlin Klopstock H (1923) Untersuchung der Dreharbeit. Julius Springer, Berlin
23.
go back to reference Kurrein MAdS (1905) Aufbau der Schnelldrehspäne. Wien: Öst. Wschr. öffentl. Baudienst Kurrein MAdS (1905) Aufbau der Schnelldrehspäne. Wien: Öst. Wschr. öffentl. Baudienst
24.
go back to reference Schlesinger G, Kurrein M (1924) Der Ausbau der Einrichtung das Versuchsfeldes für Werkzeugmaschinen an der Technischen Hochschule zu Berlin seit 1912. Springer Berlin Heidelberg, Berlin Schlesinger G, Kurrein M (1924) Der Ausbau der Einrichtung das Versuchsfeldes für Werkzeugmaschinen an der Technischen Hochschule zu Berlin seit 1912. Springer Berlin Heidelberg, Berlin
25.
go back to reference De Leeuw AL, Plainfield NG (1917) A foundation for machine-tolol design and construction. ASME Trans 39:185–211 De Leeuw AL, Plainfield NG (1917) A foundation for machine-tolol design and construction. ASME Trans 39:185–211
26.
go back to reference Cheluskin AN (1933) Cutting theory (in Russian). Gosmashmet, Moskow Cheluskin AN (1933) Cutting theory (in Russian). Gosmashmet, Moskow
27.
go back to reference Discussion on machinability: at the conference at the institution on 24th May 1946. Proc Inst Mech Eng. 155(1):267–291 Discussion on machinability: at the conference at the institution on 24th May 1946. Proc Inst Mech Eng. 155(1):267–291
28.
go back to reference Wallichs A (1930) Der heutige Stand der Forschung auf dem Gebiete der Metalzerspanug, in Berichte über betriebswirtschaftliche Arbeiten. Berlin, VDI-Verlag Wallichs A (1930) Der heutige Stand der Forschung auf dem Gebiete der Metalzerspanug, in Berichte über betriebswirtschaftliche Arbeiten. Berlin, VDI-Verlag
29.
go back to reference Groover MP (2010) Fundamentals of modern manufacturing. materials, Processes, and Systems. 4th ed. Willey, Hoboken, NJ Groover MP (2010) Fundamentals of modern manufacturing. materials, Processes, and Systems. 4th ed. Willey, Hoboken, NJ
30.
go back to reference Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools, 3rd edn. CRCPress, Boca Raton Boothroyd G, Knight WA (2006) Fundamentals of machining and machine tools, 3rd edn. CRCPress, Boca Raton
31.
go back to reference Shaw MC (2005) Metal cutting principles, 2nd edn. Oxford University Press, Oxford Shaw MC (2005) Metal cutting principles, 2nd edn. Oxford University Press, Oxford
32.
go back to reference Klocke F (2011) Manufacturing processes 1. Csutting. Springer, Berlin Klocke F (2011) Manufacturing processes 1. Csutting. Springer, Berlin
33.
go back to reference Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanendenWerkzeugen und Werkzeugmaschinen. VDI-Z 94(11/12):299–305 Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanendenWerkzeugen und Werkzeugmaschinen. VDI-Z 94(11/12):299–305
34.
go back to reference Kienzle O, Victor H (1957) Spezifische schnittkräfte bei der metallbearbeitung. Werkstattstechnik und Maschinenbau 47(5):224–225 Kienzle O, Victor H (1957) Spezifische schnittkräfte bei der metallbearbeitung. Werkstattstechnik und Maschinenbau 47(5):224–225
35.
go back to reference Isakov E (2004) Engineering Formulas for Metalcutting. Industrial Press, New York Isakov E (2004) Engineering Formulas for Metalcutting. Industrial Press, New York
36.
go back to reference Machining Data Handbook (1980) Machinability Data Center, Cincinnati, OH Machining Data Handbook (1980) Machinability Data Center, Cincinnati, OH
37.
go back to reference McCauley CJ (ed) (2000) Machinery's Handbook. 26th ed. Industrial Press, New York McCauley CJ (ed) (2000) Machinery's Handbook. 26th ed. Industrial Press, New York
44.
go back to reference Taylor FW (1911) The principles of scientific management. Haper & Brothers, New York Taylor FW (1911) The principles of scientific management. Haper & Brothers, New York
45.
go back to reference ISCAR (2019) Coplete Machning Solution, non-rotating tool lines ISCAR (2019) Coplete Machning Solution, non-rotating tool lines
46.
go back to reference Walter (2019) Perform line—economic, reliable, highest quality Walter (2019) Perform line—economic, reliable, highest quality
47.
go back to reference Kennametal (2018) Master Cataloh 2018. Volume one—turning Kennametal (2018) Master Cataloh 2018. Volume one—turning
49.
go back to reference Salomon C (1928) Zur theorie des Fräsvorgandes Z. Ver Deut Ing 1619–1624 Salomon C (1928) Zur theorie des Fräsvorgandes Z. Ver Deut Ing 1619–1624
50.
go back to reference Vulf AM (1963) Metal cutting. State Publishing House of Science Literature, Moscow (in Russian) Vulf AM (1963) Metal cutting. State Publishing House of Science Literature, Moscow (in Russian)
51.
go back to reference Martellotti ME (1941) An analysis of the milling process. Trans ASME 63:677–700 Martellotti ME (1941) An analysis of the milling process. Trans ASME 63:677–700
52.
go back to reference Martellotti ME (1945) An analysis of the milling process II. Down milling. Trans ASME 67:233–251 Martellotti ME (1945) An analysis of the milling process II. Down milling. Trans ASME 67:233–251
53.
go back to reference Janota M, Kolar P, Sulika M (2019) Operational method for identification of specific cutting force during milling. MM Sci J Special Issue on HSM 2019:3250–3257 Janota M, Kolar P, Sulika M (2019) Operational method for identification of specific cutting force during milling. MM Sci J Special Issue on HSM 2019:3250–3257
54.
go back to reference Sawin NN (1926) Theory of milling cutters. Mech Eng 46:1203–1209 Sawin NN (1926) Theory of milling cutters. Mech Eng 46:1203–1209
55.
go back to reference Persons F (1923) Power requred for cutting metal. Trans ASME 45:193–227 Persons F (1923) Power requred for cutting metal. Trans ASME 45:193–227
56.
go back to reference Boston OW, Kraus CE (1932) The elements of milling. Trans ASME. 54:71–92 Boston OW, Kraus CE (1932) The elements of milling. Trans ASME. 54:71–92
57.
go back to reference Fu HJ, DeVor RE, Kapoor SG (1984) A mechanistic model for prediction of the force system in face milling operations. ASME J Eng Ind 106:81–88CrossRef Fu HJ, DeVor RE, Kapoor SG (1984) A mechanistic model for prediction of the force system in face milling operations. ASME J Eng Ind 106:81–88CrossRef
58.
go back to reference Armarego EJA (1967) Machining with double cutting edge tools—I. Symmetrical triangular cuts. Int J Mach Tool Des Res 7:23–37 Armarego EJA (1967) Machining with double cutting edge tools—I. Symmetrical triangular cuts. Int J Mach Tool Des Res 7:23–37
59.
go back to reference Armarego EJA (2000) The unified-generalized mechanics of cutting approach—a step towards a house of performance models for machining operations. Mach Sci Technol 4:319–362CrossRef Armarego EJA (2000) The unified-generalized mechanics of cutting approach—a step towards a house of performance models for machining operations. Mach Sci Technol 4:319–362CrossRef
60.
go back to reference Augspurger T, Schraknepper D, Bergs T (2020) Experimental investigation of specific cutting forces and estimation of the heat partitioning under increasing tool wear in machining nickel-based super alloy IN 718. Prod Eng Res Devel 14:491–498CrossRef Augspurger T, Schraknepper D, Bergs T (2020) Experimental investigation of specific cutting forces and estimation of the heat partitioning under increasing tool wear in machining nickel-based super alloy IN 718. Prod Eng Res Devel 14:491–498CrossRef
61.
go back to reference Astakhov VP (2006) Tribology of metal cutting. Elsevier, London Astakhov VP (2006) Tribology of metal cutting. Elsevier, London
62.
go back to reference Rozenberg AM, Eremin AN (1956) Elements of metal cutting theory. Machgiz, Moscow (in Russian) Rozenberg AM, Eremin AN (1956) Elements of metal cutting theory. Machgiz, Moscow (in Russian)
63.
go back to reference Artamonov EV, Vasiljev LV, Uteshev MH (2012) Metal cutting and temperature factor (in Russian). TumenNGSU, Tumen, Russia Artamonov EV, Vasiljev LV, Uteshev MH (2012) Metal cutting and temperature factor (in Russian). TumenNGSU, Tumen, Russia
64.
go back to reference Altintas Y (2000) Modeling approaches and software for predicting the performance of milling operations at MAL-UBC. Mach Sci Technol 4(3):445–478MathSciNetCrossRef Altintas Y (2000) Modeling approaches and software for predicting the performance of milling operations at MAL-UBC. Mach Sci Technol 4(3):445–478MathSciNetCrossRef
65.
go back to reference Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and cnc design, 2nd edn. Cambrige, New YorkCrossRef Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and cnc design, 2nd edn. Cambrige, New YorkCrossRef
66.
go back to reference Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int J Mech Sci 47:1649–1672MATHCrossRef Astakhov VP (2005) On the inadequacy of the single-shear plane model of chip formation. Int J Mech Sci 47:1649–1672MATHCrossRef
67.
go back to reference Reuleaux F (1900) Über den Taylor Whiteschen Werkzeugstahl Verein sur Berforderung des Gewerbefleissen in Preussen. Sitzungsberichete 79(1):179–220 Reuleaux F (1900) Über den Taylor Whiteschen Werkzeugstahl Verein sur Berforderung des Gewerbefleissen in Preussen. Sitzungsberichete 79(1):179–220
68.
go back to reference Atkins AG, Mai Y-W (1985) Elastic and plastic fracture. Ellis Horwood, Chichester, UK Atkins AG, Mai Y-W (1985) Elastic and plastic fracture. Ellis Horwood, Chichester, UK
69.
go back to reference Atkins AG (2009) The science and engineering of cutting. Butterworth-Heinemann, Oxford UK Atkins AG (2009) The science and engineering of cutting. Butterworth-Heinemann, Oxford UK
70.
go back to reference Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: qualitative explanations for some longstanding problems. Int J Mech Sci 45:373–396CrossRef Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: qualitative explanations for some longstanding problems. Int J Mech Sci 45:373–396CrossRef
71.
go back to reference Astakhov VP (1998/1999) Metal Cutting Mechanics. CRC Press, Boca Raton, USA Astakhov VP (1998/1999) Metal Cutting Mechanics. CRC Press, Boca Raton, USA
72.
go back to reference Komarovsky AA, Astakhoy VP (2002) Physics of strength and fracture control: fundamentals of the adaptation of engineering materials and structures. CRC, Boca Raton Komarovsky AA, Astakhoy VP (2002) Physics of strength and fracture control: fundamentals of the adaptation of engineering materials and structures. CRC, Boca Raton
73.
go back to reference Sidjanin L, Kovac P (1997) Fracture mechanisms in chip formation processes. Mater Sci Technol 13(5):439–444CrossRef Sidjanin L, Kovac P (1997) Fracture mechanisms in chip formation processes. Mater Sci Technol 13(5):439–444CrossRef
74.
go back to reference Williams JG, Patel Y, Blackman BRK (2010) A fracture mechanics analysis of cutting and machining. Eng Fract Mech 77(2):293–308CrossRef Williams JG, Patel Y, Blackman BRK (2010) A fracture mechanics analysis of cutting and machining. Eng Fract Mech 77(2):293–308CrossRef
75.
go back to reference Williams JG, Patel Y (2016) Fundamentals of cutting. Interface Focus 6(3):20150108CrossRef Williams JG, Patel Y (2016) Fundamentals of cutting. Interface Focus 6(3):20150108CrossRef
76.
go back to reference Cheng W, Outeiro J, Costes J-P, M'Saoubib R, Karaounic H, Astakhov VP (2019) A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Eng Fract Mech 219:103103 Cheng W, Outeiro J, Costes J-P, M'Saoubib R, Karaounic H, Astakhov VP (2019) A constitutive model for Ti6Al4V considering the state of stress and strain rate effects. Eng Fract Mech 219:103103
77.
go back to reference Xu X, Outeiro J, Shang J, Hu B, Zhao W, Astakhov V (2021) Machining simulation of ti6al4v using coupled Eulerian-Lagrangian approach and a constitutive model considering the state of stress. Simul Model Pract Theory 110:102312 Xu X, Outeiro J, Shang J, Hu B, Zhao W, Astakhov V (2021) Machining simulation of ti6al4v using coupled Eulerian-Lagrangian approach and a constitutive model considering the state of stress. Simul Model Pract Theory 110:102312
78.
79.
go back to reference Awerjcewicz J (ed) (2011) Numerical analysis, theory and application. InTech: Rijeka, Croatia Awerjcewicz J (ed) (2011) Numerical analysis, theory and application. InTech: Rijeka, Croatia
80.
go back to reference Roth S, Chamoret D, Badin J, Imbert JR, Gomes S (2011) Crash FE simulation in the design process—theory and application. In: Awerjcewicz J (ed) Numerical analysis, theory and application. InTech: Rijeka, Croatia Roth S, Chamoret D, Badin J, Imbert JR, Gomes S (2011) Crash FE simulation in the design process—theory and application. In: Awerjcewicz J (ed) Numerical analysis, theory and application. InTech: Rijeka, Croatia
81.
go back to reference Roll K (2008) Simulation of sheet metal forming—necessary developments in the future. In: The 7th international conference and workshop on numerical simulation of 3d sheet metal forming processes (NUMISHEET). Interlaken, Switzerland Roll K (2008) Simulation of sheet metal forming—necessary developments in the future. In: The 7th international conference and workshop on numerical simulation of 3d sheet metal forming processes (NUMISHEET). Interlaken, Switzerland
82.
go back to reference Astakhov VP (2011) Authentication of FEM in metal cutting, chapter 1. In: Davim JP (ed) Finite element method in manufacturing processes. Wiley, pp 1–43 Astakhov VP (2011) Authentication of FEM in metal cutting, chapter 1. In: Davim JP (ed) Finite element method in manufacturing processes. Wiley, pp 1–43
85.
go back to reference Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166MathSciNetMATHCrossRef Borden MJ, Hughes TJ, Landis CM, Anvari A, Lee IJ (2016) A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Comput Methods Appl Mech Eng 312:130–166MathSciNetMATHCrossRef
86.
go back to reference Eldahshan H, Bouchard P-O, Alves J, Perchat E, Munoz DP (2021) Phase field modeling of ductile fracture at large plastic strains using adaptive isotropic remeshing. Comput Mech 67:763–783MathSciNetMATHCrossRef Eldahshan H, Bouchard P-O, Alves J, Perchat E, Munoz DP (2021) Phase field modeling of ductile fracture at large plastic strains using adaptive isotropic remeshing. Comput Mech 67:763–783MathSciNetMATHCrossRef
88.
go back to reference Astakhov VP (2018) Mechanical properties of engineering materials: relevance in design and manufacturing. In: Davim P (ed) Introduction to mechanical engineering. Springer International Publishing AG, Cham, Switzerland, pp 3–41 Astakhov VP (2018) Mechanical properties of engineering materials: relevance in design and manufacturing. In: Davim P (ed) Introduction to mechanical engineering. Springer International Publishing AG, Cham, Switzerland, pp 3–41
89.
go back to reference Liu J, Bai Y, Xu C (2013) Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng 136:011010; Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng 136:011010 Liu J, Bai Y, Xu C (2013) Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng 136:011010; Evaluation of ductile fracture models in finite element simulation of metal cutting processes. J Manuf Sci Eng 136:011010
90.
go back to reference Astakhov VP, Xiao X (2016) The principle of minimum strain energy to fracture of the work material and its application in modern cutting technologies. In: Davim P (ed) Metal Cutting Technology. De Gruyter Publishers, Boston, MA, pp 1–35 Astakhov VP, Xiao X (2016) The principle of minimum strain energy to fracture of the work material and its application in modern cutting technologies. In: Davim P (ed) Metal Cutting Technology. De Gruyter Publishers, Boston, MA, pp 1–35
91.
go back to reference Abushawashi Y, Xiao X, Astakhov V (2017) Practical applications of the “energy–triaxiality” state relationship in metal cutting. Mach Sci Technol Int J 21(1):1–18CrossRef Abushawashi Y, Xiao X, Astakhov V (2017) Practical applications of the “energy–triaxiality” state relationship in metal cutting. Mach Sci Technol Int J 21(1):1–18CrossRef
92.
go back to reference Abushawashi Y, Xiao X, Astakhov VP (2013) A novel approach for determining material constitutive parameters for a wide range of triaxiality under plane strain loading conditions. Int J Mech Sci 74:133–142CrossRef Abushawashi Y, Xiao X, Astakhov VP (2013) A novel approach for determining material constitutive parameters for a wide range of triaxiality under plane strain loading conditions. Int J Mech Sci 74:133–142CrossRef
93.
go back to reference Wang B, Xiao X, Astakhov VP, Liu Z (2019) The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Eng Fract Mech 219:106627 Wang B, Xiao X, Astakhov VP, Liu Z (2019) The effects of stress triaxiality and strain rate on the fracture strain of Ti6Al4V. Eng Fract Mech 219:106627
94.
go back to reference Klocke F (2013) Manufacturing processes 4 forming. Springer Heidelberg, New York Klocke F (2013) Manufacturing processes 4 forming. Springer Heidelberg, New York
95.
go back to reference Joun MS, MG, Moonc HG, NG., Choi, I.S., Lee MC, Jun BY (2009) Effects of friction laws on metal forming processes. Tribology Int 42:311–319 Joun MS, MG, Moonc HG, NG., Choi, I.S., Lee MC, Jun BY (2009) Effects of friction laws on metal forming processes. Tribology Int 42:311–319
96.
go back to reference Kim H, Kardes N, Chapter 7: friction and lusbrication. In: Altan T, Tekkaya AE (eds) Sheet Metal forming—fundamentals. ASM International: Novelty, OH Kim H, Kardes N, Chapter 7: friction and lusbrication. In: Altan T, Tekkaya AE (eds) Sheet Metal forming—fundamentals. ASM International: Novelty, OH
97.
go back to reference Astakhov VP, Shavets SV (2020) Technical resource of the cutting wedge is the foundation of the machining regime determination. Int J Manuf Mater Mech Eng 10:1–17 Astakhov VP, Shavets SV (2020) Technical resource of the cutting wedge is the foundation of the machining regime determination. Int J Manuf Mater Mech Eng 10:1–17
Metadata
Title
Cutting Force Modeling: Genesis, State of the Art, and Development
Author
Viktor P. Astakhov
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90487-6_2

Premium Partners