Skip to main content
Top

2017 | OriginalPaper | Chapter

Cyclic Response of Natural Onsøy Clay

Part II: Constitutive Modeling

Authors : Thomas Barciaga, Nina Müthing, Maria Datcheva, Tom Schanz

Published in: Holistic Simulation of Geotechnical Installation Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Geotechnical csonstruction projects in natural clay deposits are challenging because of the complex constitutive features of these clays (e.g. inherent and stress-induced anisotropy and destructuration). Cyclic loading, on the other hand, is typical for various geotechnical applications where natural clay deposits are involved such as wind and wave loads in relation to onshore and offshore foundations, ship locks or dams. This makes important to consider cyclic loads in the numerical simulations for geotechnical applications in natural clay deposits. Therefore, in case of natural clays it is essential to have proper constitutive models accounting for the clay material response to the cyclic nature of the loading in order to have reliable predictions of the time-dependent consolidation behavior and the corresponding development of the ground settlements. Within the present study the influence of the constitutive model on the numerical simulation of the natural clay consolidation under cyclic loading is qualitatively investigated employing the experimental results for a typical natural clay reported in the companion paper Cyclic response of natural Onsøy clay – Part I: Experimental analysis. The approach followed in this paper employs an adequate hierarchical constitutive soil model based on the bounding surface plasticity (BSP) concept. The hierarchical structure of the constitutive model makes it possible to investigate the importance of a particular feature of the model such as the inherent and the stress-induced anisotropy, the structure and the destructuration by activation/deactivation of the associated constitutive parameters. Finally, the model responses (such as the evolution of the excess pore-pressure and the settlement during cyclic loading) of each model of the hierarchical family are compared and discussed with respect to the necessity of the model complexity level. In order to calibrate the constitutive parameters a number of geotechnical experiments are numerically simulated considering natural and reconstituted Onsøy clay samples under drained and undrained hydraulic conditions. Moreover, the significant influence of the destructuration and the features of the BSP concept on the model response under consolidation induced by cyclic loading is highlighted. In conclusion, it is shown that the presented constitutive model based on the BSP concept is generally capable to predict the consolidation behavior of natural clay induced by cyclic loading. The model is suitable to simulate the main phenomena such as the pore-water pressure dissipation behavior and the associated but retarded evolution of the settlement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Anandarajah, A., Dafalias, Y.F.: Bounding surface plasticity III: application to anisotropic cohesive soils. J. Eng. Mech. 112(12), 1292–1318 (1986)CrossRef Anandarajah, A., Dafalias, Y.F.: Bounding surface plasticity III: application to anisotropic cohesive soils. J. Eng. Mech. 112(12), 1292–1318 (1986)CrossRef
2.
go back to reference Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12(2), 155–165 (1941)CrossRefMATH Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12(2), 155–165 (1941)CrossRefMATH
3.
go back to reference Burland, J.B.: The yielding and dilation of clay. Géotechnique 15(2), 211–214 (1965)CrossRef Burland, J.B.: The yielding and dilation of clay. Géotechnique 15(2), 211–214 (1965)CrossRef
4.
go back to reference Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)CrossRef Burland, J.B.: On the compressibility and shear strength of natural clays. Géotechnique 40(3), 329–378 (1990)CrossRef
5.
go back to reference Cotecchia, F., Chandler, R.J.: A general framework for the mechanical behavior of clays. Géotechnique 50(4), 431–447 (2000)CrossRef Cotecchia, F., Chandler, R.J.: A general framework for the mechanical behavior of clays. Géotechnique 50(4), 431–447 (2000)CrossRef
6.
go back to reference Dafalias, Y.F.: Bounding surface plasticity I: mathematical foundation and hypoplasticity. J. Eng. Mech. 112(EM9), 966–987 (1986a)CrossRef Dafalias, Y.F.: Bounding surface plasticity I: mathematical foundation and hypoplasticity. J. Eng. Mech. 112(EM9), 966–987 (1986a)CrossRef
7.
go back to reference Dafalias, Y.F.: An anisotropic critical state soil plasticity model. Mech. Res. Commun. 13(6), 341–347 (1986c)CrossRefMATH Dafalias, Y.F.: An anisotropic critical state soil plasticity model. Mech. Res. Commun. 13(6), 341–347 (1986c)CrossRefMATH
8.
go back to reference Dafalias, Y.F., Herrmann, L.R.: Bounding surface formulation of soil plasticity. In: Pande, G.N., Zienkiewicz, O.C. (eds.) Soil Mechanics - Transient and Cyclic Loads, pp. 253–282 (1982) Dafalias, Y.F., Herrmann, L.R.: Bounding surface formulation of soil plasticity. In: Pande, G.N., Zienkiewicz, O.C. (eds.) Soil Mechanics - Transient and Cyclic Loads, pp. 253–282 (1982)
9.
go back to reference Dafalias, Y.F., Herrmann, L.R.: Bounding surface plasticity II: application to isotropic cohesive soils. J. Eng. Mech. 112(12), 1263–1291 (1986b)CrossRef Dafalias, Y.F., Herrmann, L.R.: Bounding surface plasticity II: application to isotropic cohesive soils. J. Eng. Mech. 112(12), 1263–1291 (1986b)CrossRef
10.
go back to reference Dafalias, Y.F., Manzari, M.T., Papadimitriou, A.G.: SANICLAY: simple anisotropic clay plasticity model. Int. J. Numer. Anal. Meth. Geomech. 30, 1231–1257 (2006)CrossRefMATH Dafalias, Y.F., Manzari, M.T., Papadimitriou, A.G.: SANICLAY: simple anisotropic clay plasticity model. Int. J. Numer. Anal. Meth. Geomech. 30, 1231–1257 (2006)CrossRefMATH
11.
go back to reference Dafalias, Y.F., Taiebat, M.: Anatomy of rotational hardening in clay plasticity. Géotechnique 63(16), 1406–1418 (2013)CrossRef Dafalias, Y.F., Taiebat, M.: Anatomy of rotational hardening in clay plasticity. Géotechnique 63(16), 1406–1418 (2013)CrossRef
12.
go back to reference Dafalias, Y.F., Taiebat, M.: Rotational hardening with and without anisotropic fabric at critical state. Géotechnique 64(6), 507–511 (2014). Technical Note Dafalias, Y.F., Taiebat, M.: Rotational hardening with and without anisotropic fabric at critical state. Géotechnique 64(6), 507–511 (2014). Technical Note
13.
go back to reference Gens, A., Nova, R.: Conceptual bases for a constitutive model for bonded soils and weak rocks. In: International Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks, pp. 485–494. Balkema (1993) Gens, A., Nova, R.: Conceptual bases for a constitutive model for bonded soils and weak rocks. In: International Symposium on Geotechnical Engineering of Hard Soils-Soft Rocks, pp. 485–494. Balkema (1993)
14.
go back to reference Gens, A., Potts, D.M.: Critical state models in computational geomechanics. Eng. Comput. 5(3), 178–197 (1988)CrossRef Gens, A., Potts, D.M.: Critical state models in computational geomechanics. Eng. Comput. 5(3), 178–197 (1988)CrossRef
15.
go back to reference Jiang, J., Ling, H.I.: A framework of an anisotropic elastoplastic model for clays. Mech. Res. Commun. 37, 394–398 (2010)CrossRefMATH Jiang, J., Ling, H.I.: A framework of an anisotropic elastoplastic model for clays. Mech. Res. Commun. 37, 394–398 (2010)CrossRefMATH
16.
go back to reference Jiang, J., Ling, H.I., Kaliakin, V.N.: An associative and non-associative anisotropic bounding surface model for clay. J. Appl. Mech. 79(3), 031010 (2012)CrossRef Jiang, J., Ling, H.I., Kaliakin, V.N.: An associative and non-associative anisotropic bounding surface model for clay. J. Appl. Mech. 79(3), 031010 (2012)CrossRef
17.
go back to reference Kaliakin, V.N., Dafalias, Y.F.: Simplifications to the bounding surface. Int. J. Num. Anal. Methods Geomech. 13, 91–100 (1989). Short communication Kaliakin, V.N., Dafalias, Y.F.: Simplifications to the bounding surface. Int. J. Num. Anal. Methods Geomech. 13, 91–100 (1989). Short communication
18.
go back to reference Kaliakin, V.N., Dafalias, Y.F.: Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils. Soils Found. 30(3), 11–24 (1990a)CrossRef Kaliakin, V.N., Dafalias, Y.F.: Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils. Soils Found. 30(3), 11–24 (1990a)CrossRef
19.
go back to reference Kaliakin, V.N., Dafalias, Y.F.: Verification of the elastoplastic-viscoplastic bounding surface model for cohesive soils. Soils Found. 30(3), 25–36 (1990b)CrossRef Kaliakin, V.N., Dafalias, Y.F.: Verification of the elastoplastic-viscoplastic bounding surface model for cohesive soils. Soils Found. 30(3), 25–36 (1990b)CrossRef
20.
go back to reference Lambe, T.W., Whitman, R.Y.: Soil Mechanics. Wiley, New York (1969) Lambe, T.W., Whitman, R.Y.: Soil Mechanics. Wiley, New York (1969)
21.
go back to reference Lunne, T., Long, M., Forsberg, C.F.: Characterisation and engineering properties of Onsøy clay. In: Tan, T.S., Phoon, K,K., Hight, D.W., Leroueil, S. (eds.) Characterisation and Engineering Properties of Natural Soils, vol. 1, pp. 395–427. Swets & Zeitlinger (2003) Lunne, T., Long, M., Forsberg, C.F.: Characterisation and engineering properties of Onsøy clay. In: Tan, T.S., Phoon, K,K., Hight, D.W., Leroueil, S. (eds.) Characterisation and Engineering Properties of Natural Soils, vol. 1, pp. 395–427. Swets & Zeitlinger (2003)
22.
go back to reference Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Wiley, Hoboken (2005) Mitchell, J.K., Soga, K.: Fundamentals of Soil Behavior, 3rd edn. Wiley, Hoboken (2005)
23.
go back to reference Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)CrossRef Perzyna, P.: Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243–377 (1966)CrossRef
24.
go back to reference Potts, D.M., Zdravkovic, L.: Finite Element Analysis in Geotechnical Engineering - Theory. Telford, London (1999) Potts, D.M., Zdravkovic, L.: Finite Element Analysis in Geotechnical Engineering - Theory. Telford, London (1999)
25.
go back to reference Rezania, M., Taiebat, M., Poletti, E.: A viscoplastic SANICLAY model for natural soft soils. Comput. Geotech. 73, 128–141 (2016)CrossRef Rezania, M., Taiebat, M., Poletti, E.: A viscoplastic SANICLAY model for natural soft soils. Comput. Geotech. 73, 128–141 (2016)CrossRef
26.
go back to reference Roscoe, K.H., Burland, J.B.: On the generalized stress strain behaviour of wet clay. In: Engineering Plasticity, pp. 535–609 (1968) Roscoe, K.H., Burland, J.B.: On the generalized stress strain behaviour of wet clay. In: Engineering Plasticity, pp. 535–609 (1968)
27.
go back to reference Roscoe, K.H., Schofield, A.N., Thurairajah, A.: Yielding of clays in states wetter than critical. Géotechnique 13(3), 211–240 (1963)CrossRef Roscoe, K.H., Schofield, A.N., Thurairajah, A.: Yielding of clays in states wetter than critical. Géotechnique 13(3), 211–240 (1963)CrossRef
28.
go back to reference Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958)CrossRef Roscoe, K.H., Schofield, A.N., Wroth, C.P.: On the yielding of soils. Géotechnique 8(1), 22–53 (1958)CrossRef
29.
go back to reference Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968) Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)
30.
go back to reference Seidalinov, G., Taiebat, M.: Bounding surface SANICLAY plasticity model for cyclic clay behavior. Int. J. Numer. Anal. Meth. Geomech. 38(7), 702–724 (2014)CrossRef Seidalinov, G., Taiebat, M.: Bounding surface SANICLAY plasticity model for cyclic clay behavior. Int. J. Numer. Anal. Meth. Geomech. 38(7), 702–724 (2014)CrossRef
31.
go back to reference Sheng, D., Sloan, S.W., Yu, H.S.: Aspects of finite element implementation of critical state models. Comput. Mech. 26, 185–196 (2000)CrossRefMATH Sheng, D., Sloan, S.W., Yu, H.S.: Aspects of finite element implementation of critical state models. Comput. Mech. 26, 185–196 (2000)CrossRefMATH
32.
go back to reference Sloan, S.W.: Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int. J. Numer. Meth. Eng. 24, 893–911 (1987)CrossRefMATH Sloan, S.W.: Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int. J. Numer. Meth. Eng. 24, 893–911 (1987)CrossRefMATH
33.
go back to reference Sloan, S.W., Abbo, A.J., Sheng, D.: Refined explicit integration of elastoplastic models with automatic error control. Eng. Comput. 18(1–2), 121–194 (2001)CrossRefMATH Sloan, S.W., Abbo, A.J., Sheng, D.: Refined explicit integration of elastoplastic models with automatic error control. Eng. Comput. 18(1–2), 121–194 (2001)CrossRefMATH
34.
go back to reference Taiebat, M., Dafalias, Y.F., Peek, R.: A destructuration theory and its application to SANICLAY model. Int. J. Numer. Anal. Meth. Geomech. 34(10), 1009–1040 (2010)MATH Taiebat, M., Dafalias, Y.F., Peek, R.: A destructuration theory and its application to SANICLAY model. Int. J. Numer. Anal. Meth. Geomech. 34(10), 1009–1040 (2010)MATH
35.
go back to reference Taiebat, M., Kaynia, A.M., Dafalias, Y.F.: Application of an anisotropic constitutive model for structured clay to seismic slope stability. J. Geotech. Geoenviron. Eng. 137(5), 492–504 (2011)CrossRef Taiebat, M., Kaynia, A.M., Dafalias, Y.F.: Application of an anisotropic constitutive model for structured clay to seismic slope stability. J. Geotech. Geoenviron. Eng. 137(5), 492–504 (2011)CrossRef
36.
go back to reference Wheeler, S., Näätänen, A., Karstunen, M., Lojander, M.: An anisotropic elastoplastic model for soft clays. Can. Geotech. J. 40(2), 403–418 (2003)CrossRef Wheeler, S., Näätänen, A., Karstunen, M., Lojander, M.: An anisotropic elastoplastic model for soft clays. Can. Geotech. J. 40(2), 403–418 (2003)CrossRef
37.
go back to reference Wichtmann, T.: Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Habilitationsschrift, Karlsruher Institut für Technologie (2016) Wichtmann, T.: Soil behaviour under cyclic loading - experimental observations, constitutive description and applications. Habilitationsschrift, Karlsruher Institut für Technologie (2016)
38.
go back to reference Wichtmann, T., Andersen, K.H., Sjursen, M.A., Berre, T.: Cyclic tests on high-quality undisturbed block samples of soft marine Norwegian clay. Can. Geotech. J. 50(4), 400–412 (2013)CrossRef Wichtmann, T., Andersen, K.H., Sjursen, M.A., Berre, T.: Cyclic tests on high-quality undisturbed block samples of soft marine Norwegian clay. Can. Geotech. J. 50(4), 400–412 (2013)CrossRef
39.
go back to reference Zienkiewicz, O.C., Pande, O.C.: Some useful forms of isotropic yield surfaces for soil and rock mechanics. In: Finite Elements in Geomechanics, pp. 179–198. Wiley, New York (1977) Zienkiewicz, O.C., Pande, O.C.: Some useful forms of isotropic yield surfaces for soil and rock mechanics. In: Finite Elements in Geomechanics, pp. 179–198. Wiley, New York (1977)
Metadata
Title
Cyclic Response of Natural Onsøy Clay
Authors
Thomas Barciaga
Nina Müthing
Maria Datcheva
Tom Schanz
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52590-7_12