Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 1/2022

01-01-2022 | STRENGTH AND PLASTICITY

Cyclic Strength of the Zr–1% Nb Alloy after Equal Channel Angular Pressing

Authors: A. B. Rozhnov, S. O. Rogachev, Khanan Alsheikh, D. V. Prosvirnin

Published in: Physics of Metals and Metallography | Issue 1/2022

Login to get access
share
SHARE

Abstract

The effect of equal channel angular pressing (ECAP) on the structure, static, and cyclic strength of zirconium alloy E110 (Zr–1% Nb) is studied. The ECAP procedure is applied to samples with a diameter of 20 mm and a length of 100 mm along the BC route with an angle of 110° between the channels in six passes with a stepwise decrease in temperature from 400 to 300°C. A highly inhomogeneous ultrafine-grained microstructure that is comprised of regions filled with cells and fragments with low misorientation and a high density of dislocations and regions with predominantly equiaxial structural units is formed in the alloy after ECAP. As a result of ECAP, the tensile strength of the alloy increases by 40%, the yield point increases by 22%, and the relative elongation decreases by a factor of 2. Equal channel angular pressing leads to a decrease in the endurance fatigue limit based on 107 cycles from 225 to 150 MPa and to a change in the fracture mechanism from a quasi-ductile microgrooved mechanism to a predominantly brittle one with secondary cracking. With high stresses in the cycle (above 280 MPa), the durabilities of the alloy both in the initial state and after ECAP are comparable.
Literature
1.
go back to reference S. G. Steinemann, Corrosion of Surgical Implants—In Vivo and In Vitro Tests, Evaluation of Biomaterials (Wiley, New York, 1980), pp. 1–34. S. G. Steinemann, Corrosion of Surgical Implants—In Vivo and In Vitro Tests, Evaluation of Biomaterials (Wiley, New York, 1980), pp. 1–34.
2.
go back to reference A. Yu. Fadeev, “Zirconium in orthopedic dentistry,” Medtekhnika I Medizdeliya, No. 4, 26–30 (2002). A. Yu. Fadeev, “Zirconium in orthopedic dentistry,” Medtekhnika I Medizdeliya, No. 4, 26–30 (2002).
3.
go back to reference Yu. G. Shaposhnikov, K. M. Sherepo, V. Yu. Gorokhov, and G. N. Berchenko, “Zirconium for explants in traumatology and orthopedics,” Ortopediya, Travmatologiya i Protezirovanie, No. 1, 31–33 (1993). Yu. G. Shaposhnikov, K. M. Sherepo, V. Yu. Gorokhov, and G. N. Berchenko, “Zirconium for explants in traumatology and orthopedics,” Ortopediya, Travmatologiya i Protezirovanie, No. 1, 31–33 (1993).
4.
go back to reference S. A. Nikulin, A. B. Rozhnov, S. O. Rogachev, V. M. Khatkevich, V. A. Turchenko, and E. S. Khotulev, “Investigation of structure, phase composition, and mechanical properties of Zr–2.5% Nb alloy after ECAP,” Mater. Lett. 169, 223–226 (2016). CrossRef S. A. Nikulin, A. B. Rozhnov, S. O. Rogachev, V. M. Khatkevich, V. A. Turchenko, and E. S. Khotulev, “Investigation of structure, phase composition, and mechanical properties of Zr–2.5% Nb alloy after ECAP,” Mater. Lett. 169, 223–226 (2016). CrossRef
5.
go back to reference V. F. Terent’ev, S. V. Dobatkin, S. A. Nikulin, V. I. Kopylov, D. V. Prosvirnin, S. O. Rogachev, and I. O. Bannykh, “Effect of equal-channel angular pressing on the fatigue strength of titanium and a zirconium alloy,” Metally 2011, No. 10, 981–988 (2011). V. F. Terent’ev, S. V. Dobatkin, S. A. Nikulin, V. I. Kopylov, D. V. Prosvirnin, S. O. Rogachev, and I. O. Bannykh, “Effect of equal-channel angular pressing on the fatigue strength of titanium and a zirconium alloy,” Metally 2011, No. 10, 981–988 (2011).
6.
go back to reference S. A. Nikulin, S. O. Rogachev, A. B. Rozhnov, V. I. Kopylov, S. V. Dobatkin, “Corrosion damage under stress corrosion cracking tests of Zr-2,5% Nb alloy after equal-channel angular pressing, Fiz. Khim. Obr. Met., No. 1, 74–80 (2012). S. A. Nikulin, S. O. Rogachev, A. B. Rozhnov, V. I. Kopylov, S. V. Dobatkin, “Corrosion damage under stress corrosion cracking tests of Zr-2,5% Nb alloy after equal-channel angular pressing, Fiz. Khim. Obr. Met., No. 1, 74–80 (2012).
7.
go back to reference M. V. P. Companhoni, J. R. G. Matheus, T. L. Marcondes, and A. L. Pinto, “Analysis of microstructure and microhardness of Zr–2.5Nb processed by High-Pressure Torsion (HPT),” J. Mater. Sci. 47, 7835–7840 (2012). CrossRef M. V. P. Companhoni, J. R. G. Matheus, T. L. Marcondes, and A. L. Pinto, “Analysis of microstructure and microhardness of Zr–2.5Nb processed by High-Pressure Torsion (HPT),” J. Mater. Sci. 47, 7835–7840 (2012). CrossRef
8.
go back to reference A. P. Zhilyaev, I. Sabirov, G. Gonzalez-Doncel, J. Molina-Aldareguia, B. Srinivasarao, and M. T. Pérez-Prado, “Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions,” Mater. Sci. Eng., A 528, 3496–3505 (2011). CrossRef A. P. Zhilyaev, I. Sabirov, G. Gonzalez-Doncel, J. Molina-Aldareguia, B. Srinivasarao, and M. T. Pérez-Prado, “Effect of Nb additions on the microstructure, thermal stability and mechanical behavior of high pressure Zr phases under ambient conditions,” Mater. Sci. Eng., A 528, 3496–3505 (2011). CrossRef
9.
go back to reference V. Sklenicka, J. Dvorak, P. Kral, M. Svoboda, M. Kvapilova, V. I. Kopylov, S. A. Nikulin, and S. V. Dobatkin, “Creep behavior of a zirconium alloy processed by equal-channel angular pressing,” Acta Phys. Pol. A 122, 485–489 (2012). CrossRef V. Sklenicka, J. Dvorak, P. Kral, M. Svoboda, M. Kvapilova, V. I. Kopylov, S. A. Nikulin, and S. V. Dobatkin, “Creep behavior of a zirconium alloy processed by equal-channel angular pressing,” Acta Phys. Pol. A 122, 485–489 (2012). CrossRef
10.
go back to reference B. S. Lee, M. H. Kim, S. K. Hwang, S. I. Kwun, and S. W. Chae, “Grain refinement of commercially pure zirconium by ECAP and subsequent intermediate heat treatment,” Mater. Sci. Eng., A 449– 451, 1087–1089 (2007). CrossRef B. S. Lee, M. H. Kim, S. K. Hwang, S. I. Kwun, and S. W. Chae, “Grain refinement of commercially pure zirconium by ECAP and subsequent intermediate heat treatment,” Mater. Sci. Eng., A 449451, 1087–1089 (2007). CrossRef
11.
go back to reference S. O. Rogachev, A. B. Rozhnov, S. A. Nikulin, O. V. Rybal’chenko, M. V. Gorshenkov, V. G. Chzhen, and S. V. Dobatkin, “Effect of torsion conditions under high pressure on the structure and strengthening of the Zr–1% Nb alloy,” Phys. Met. Metallogr. 117, No. 4, 371–377 (2016). CrossRef S. O. Rogachev, A. B. Rozhnov, S. A. Nikulin, O. V. Rybal’chenko, M. V. Gorshenkov, V. G. Chzhen, and S. V. Dobatkin, “Effect of torsion conditions under high pressure on the structure and strengthening of the Zr–1% Nb alloy,” Phys. Met. Metallogr. 117, No. 4, 371–377 (2016). CrossRef
12.
go back to reference V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastics processing of metals by simple shearing,” Izv. Akad. Nauk SSSR, Met., No. 1, 115–123 (1981). V. M. Segal, V. I. Reznikov, A. E. Drobyshevskii, and V. I. Kopylov, “Plastics processing of metals by simple shearing,” Izv. Akad. Nauk SSSR, Met., No. 1, 115–123 (1981).
13.
go back to reference R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014). R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, New York, 2014).
14.
go back to reference V. F. Terent’ev, “Cyclic strength of submicro- and nanocrystalline metals and alloys (review),” Novye Materialy i Tekhnologii v Metallurgii I Mashinostroenii, No. 1, 8–24 (2010). V. F. Terent’ev, “Cyclic strength of submicro- and nanocrystalline metals and alloys (review),” Novye Materialy i Tekhnologii v Metallurgii I Mashinostroenii, No. 1, 8–24 (2010).
15.
go back to reference T. Sawai, S. Matsuoka, and K. Tsuzaki, “Low-and high-cycle fatigue properties of ultrafine-grained low carbon steels,” J. Iron Steel Inst. Jpn. 89, 726–733 (2003). CrossRef T. Sawai, S. Matsuoka, and K. Tsuzaki, “Low-and high-cycle fatigue properties of ultrafine-grained low carbon steels,” J. Iron Steel Inst. Jpn. 89, 726–733 (2003). CrossRef
16.
go back to reference A. Vinogradov, S. Hashimoto, and V. I. Kopylov, “Enhanced strength and fatigue life of ultrafine grain Fe-36Ni Invar alloy,” Mater. Sci. Eng., A 355, 277–285 (2003). CrossRef A. Vinogradov, S. Hashimoto, and V. I. Kopylov, “Enhanced strength and fatigue life of ultrafine grain Fe-36Ni Invar alloy,” Mater. Sci. Eng., A 355, 277–285 (2003). CrossRef
17.
go back to reference A. Vinogradov, V. V. Stolyarov, S. Hashimoto, and R. Z. Valiev, “Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation,” Mater. Sci. Eng., A 318, 163–173 (2001). CrossRef A. Vinogradov, V. V. Stolyarov, S. Hashimoto, and R. Z. Valiev, “Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation,” Mater. Sci. Eng., A 318, 163–173 (2001). CrossRef
18.
go back to reference H. K. Kim, M. I. Choi, C. S. Chung, and D. H. Shin, “Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing,” Mater. Sci. Eng., A 340, 243–250 (2003). CrossRef H. K. Kim, M. I. Choi, C. S. Chung, and D. H. Shin, “Fatigue properties of ultrafine grained low carbon steel produced by equal channel angular pressing,” Mater. Sci. Eng., A 340, 243–250 (2003). CrossRef
Metadata
Title
Cyclic Strength of the Zr–1% Nb Alloy after Equal Channel Angular Pressing
Authors
A. B. Rozhnov
S. O. Rogachev
Khanan Alsheikh
D. V. Prosvirnin
Publication date
01-01-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 1/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22010112