Skip to main content
Top
Published in:

01-10-2024

DA-RNN-Based Bus Arrival Time Prediction Model

Author: Zhixiao Li

Published in: International Journal of Intelligent Transportation Systems Research | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article introduces a DA-RNN-based bus arrival time prediction model that addresses the challenges of varying road traffic conditions. The model combines static factors such as infrastructure and operational arrangements with dynamic factors like traffic conditions and weather. It uses a dual-stage attention mechanism to capture complex patterns and improve prediction accuracy. The model is optimized using an improved seagull optimization algorithm, which enhances its performance and stability. The study validates the model through simulation experiments, demonstrating its superiority over existing methods in predicting bus arrival times during different time periods. The model's high accuracy and stability make it a valuable tool for optimizing traffic planning and alleviating congestion in smart cities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Kawatani, T., Yamaguchi, T., Sato, Y., Maita, R., Mine, T.: Prediction of bus travel time over intervals between pairs of adjacent bus stops using city bus probe data. Int. J. Intell. Transp. Syst. Res. 19(2), 456–467 (2021) Kawatani, T., Yamaguchi, T., Sato, Y., Maita, R., Mine, T.: Prediction of bus travel time over intervals between pairs of adjacent bus stops using city bus probe data. Int. J. Intell. Transp. Syst. Res. 19(2), 456–467 (2021)
2.
go back to reference Alam, O., Kush, A., Emami, A., Pouladzadeh, P.: Predicting irregularities in arrival times for transit buses with recurrent neural networks using GPS coordinates and weather data. J. Ambient Intell. Humaniz. Comput. 12(1), 7813–7826 (2021)CrossRef Alam, O., Kush, A., Emami, A., Pouladzadeh, P.: Predicting irregularities in arrival times for transit buses with recurrent neural networks using GPS coordinates and weather data. J. Ambient Intell. Humaniz. Comput. 12(1), 7813–7826 (2021)CrossRef
3.
go back to reference Crudden, S., Berrebi, S.: An open-source framework to implement kalman filter bus arrival predictions. Networks Spat. Econ. 23(2), 429–443 (2023)CrossRef Crudden, S., Berrebi, S.: An open-source framework to implement kalman filter bus arrival predictions. Networks Spat. Econ. 23(2), 429–443 (2023)CrossRef
4.
go back to reference Nagaraj, N., Gururaj, H.L., Swathi, B.H., Hu, Y.C.: Passenger flow prediction in bus transportation system using deep learning. Multimedia Tools Appl. 81(9), 12519–12542 (2022)CrossRef Nagaraj, N., Gururaj, H.L., Swathi, B.H., Hu, Y.C.: Passenger flow prediction in bus transportation system using deep learning. Multimedia Tools Appl. 81(9), 12519–12542 (2022)CrossRef
5.
go back to reference Abbas, K., Hassan, Z.: A projection recurrent neural network based sliding mode control to stabilize unknown fractional-order chaotic systems. Int. J. Dynamics Control. 11(4), 1736–1750 (2023)MathSciNetCrossRef Abbas, K., Hassan, Z.: A projection recurrent neural network based sliding mode control to stabilize unknown fractional-order chaotic systems. Int. J. Dynamics Control. 11(4), 1736–1750 (2023)MathSciNetCrossRef
6.
go back to reference Kamble, A., Malemath, V.S.: Adam Improved Rider optimization-based deep recurrent neural network for the intrusion detection in Cyber Physical systems. Int. J. Swarm Intell. Res. 13(1), 110–131 (2022) Kamble, A., Malemath, V.S.: Adam Improved Rider optimization-based deep recurrent neural network for the intrusion detection in Cyber Physical systems. Int. J. Swarm Intell. Res. 13(1), 110–131 (2022)
7.
go back to reference Xing, B., Xu, E., Wei, J., Meng, Y.: Recurrent neural network non-singular terminal sliding mode control for path following of autonomous ground vehicles with parametric uncertainties. IET Intel. Transport Syst. 16(5), 616–629 (2022)CrossRef Xing, B., Xu, E., Wei, J., Meng, Y.: Recurrent neural network non-singular terminal sliding mode control for path following of autonomous ground vehicles with parametric uncertainties. IET Intel. Transport Syst. 16(5), 616–629 (2022)CrossRef
8.
go back to reference Ahmad, B., Usama, M., Ahmad, T., Khatoon, S., Alam, C.M.: An ensemble model of convolution and recurrent neural network for skin disease classification. Int. J. Imaging Syst. Technol. 32(1), 218–229 (2022)CrossRef Ahmad, B., Usama, M., Ahmad, T., Khatoon, S., Alam, C.M.: An ensemble model of convolution and recurrent neural network for skin disease classification. Int. J. Imaging Syst. Technol. 32(1), 218–229 (2022)CrossRef
9.
go back to reference Wang, Y.: Intellectualization of the urban and rural bus: The arrival time prediction method. J. Intell. Syst. 30(1), 689–697 (2021) Wang, Y.: Intellectualization of the urban and rural bus: The arrival time prediction method. J. Intell. Syst. 30(1), 689–697 (2021)
10.
go back to reference Huang, Y.P., Chen, C., Su, Z.C., Chen, T.S., Sumalee, A., Pan, T.L., Zhong, R.X.: Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and bayesian support vector regression. Appl. Soft Comput. 111(2), 107663–107675 (2021)CrossRef Huang, Y.P., Chen, C., Su, Z.C., Chen, T.S., Sumalee, A., Pan, T.L., Zhong, R.X.: Bus arrival time prediction and reliability analysis: An experimental comparison of functional data analysis and bayesian support vector regression. Appl. Soft Comput. 111(2), 107663–107675 (2021)CrossRef
11.
go back to reference Jia, F., Zhang, H., Hu, X.: RHMX: Bus arrival time prediction via mixed model. J. Electron. Res. Application: JERA. 5(6), 30–43 (2021)CrossRef Jia, F., Zhang, H., Hu, X.: RHMX: Bus arrival time prediction via mixed model. J. Electron. Res. Application: JERA. 5(6), 30–43 (2021)CrossRef
12.
go back to reference Li, X., Cottam, A., Wu, Y.J.: Transit arrival time prediction using interaction networks[J]. IEEE Trans. Intell. Transp. Syst. 24(4), 3833–3844 (2023)CrossRef Li, X., Cottam, A., Wu, Y.J.: Transit arrival time prediction using interaction networks[J]. IEEE Trans. Intell. Transp. Syst. 24(4), 3833–3844 (2023)CrossRef
13.
go back to reference Mei, Z., Yu, W., Tang, W., Yu, J., Cai, Z.: Attention mechanism-based model for short‐term bus traffic passenger volume prediction[J]. IET Intel. Transport Syst. 17(4), 767–779 (2023)CrossRef Mei, Z., Yu, W., Tang, W., Yu, J., Cai, Z.: Attention mechanism-based model for short‐term bus traffic passenger volume prediction[J]. IET Intel. Transport Syst. 17(4), 767–779 (2023)CrossRef
14.
go back to reference Zhao, T., Huang, Z., Tu, W., Biljecki, F., Chen, L.: Developing a multiview spatiotemporal model based on deep graph neural networks to predict the travel demand by bus[J]. Int. J. Geogr. Inf. Sci. 37(7), 1555–1581 (2023)CrossRef Zhao, T., Huang, Z., Tu, W., Biljecki, F., Chen, L.: Developing a multiview spatiotemporal model based on deep graph neural networks to predict the travel demand by bus[J]. Int. J. Geogr. Inf. Sci. 37(7), 1555–1581 (2023)CrossRef
15.
go back to reference Nimpanomprasert, T., Xie, L., Kliewer, N.: Comparing two hybrid neural network models to predict real-world bus travel time. Transp. Res. Procedia. 62(5), 393–400 (2022)CrossRef Nimpanomprasert, T., Xie, L., Kliewer, N.: Comparing two hybrid neural network models to predict real-world bus travel time. Transp. Res. Procedia. 62(5), 393–400 (2022)CrossRef
16.
go back to reference Mandal, R., Karmakar, P., Chatterjee, S., Spandan, D.D., Pradhan, S., Saha, S., Chakraborty, S., Nandi, S.: Exploiting multi-modal contextual sensing for city-bus’s stay location characterization: Towards sub-60 seconds accurate arrival time prediction. ACM Trans. Internet Things. 4(1), 1–24 (2023)CrossRef Mandal, R., Karmakar, P., Chatterjee, S., Spandan, D.D., Pradhan, S., Saha, S., Chakraborty, S., Nandi, S.: Exploiting multi-modal contextual sensing for city-bus’s stay location characterization: Towards sub-60 seconds accurate arrival time prediction. ACM Trans. Internet Things. 4(1), 1–24 (2023)CrossRef
17.
go back to reference Vidya, G.S., Hari, V.S.: LSTM Network Integrated with Particle Filter for Predicting the bus passenger traffic. J. Signal. Process. Syst. 95(2), 161–176 (2023)CrossRef Vidya, G.S., Hari, V.S.: LSTM Network Integrated with Particle Filter for Predicting the bus passenger traffic. J. Signal. Process. Syst. 95(2), 161–176 (2023)CrossRef
18.
go back to reference Zhang, H., Bai, L.: Few-shot link prediction for temporal knowledge graphs based on time-aware translation and attention mechanism[J]. Neural Netw. 161(4), 371–381 (2023)CrossRef Zhang, H., Bai, L.: Few-shot link prediction for temporal knowledge graphs based on time-aware translation and attention mechanism[J]. Neural Netw. 161(4), 371–381 (2023)CrossRef
19.
go back to reference Wang, Y., He, Y., Yu, F.R., Lin, Q., Leung, V.C.M.: Efficient resource allocation in Multi-UAV assisted vehicular networks with security constraint and attention Mechanism[J]. IEEE Trans. Wireless Commun. 22(1), 4802–4813 (2023)CrossRef Wang, Y., He, Y., Yu, F.R., Lin, Q., Leung, V.C.M.: Efficient resource allocation in Multi-UAV assisted vehicular networks with security constraint and attention Mechanism[J]. IEEE Trans. Wireless Commun. 22(1), 4802–4813 (2023)CrossRef
20.
go back to reference Ni, J., Zhou, Z., Zhao, Y., Han, Z., Zhao, L.: Tomato leaf disease recognition based on improved convolutional neural network with attention mechanism[J]. Plant. Pathol. 72(7), 1335–1344 (2023)CrossRef Ni, J., Zhou, Z., Zhao, Y., Han, Z., Zhao, L.: Tomato leaf disease recognition based on improved convolutional neural network with attention mechanism[J]. Plant. Pathol. 72(7), 1335–1344 (2023)CrossRef
21.
go back to reference Envelope, M.E.A., Envelope F B B B, Envelope C M F C D, Envelope, M.M.A., Envelope A N A E P, Envelope, D.I.F.: Envelope E S G H. optimal operation of multi-reservoir systems for increasing power generation using a seagull optimization algorithm and heading policy. Energy Rep. 7(2), 3703–3725 (2021) Envelope, M.E.A., Envelope F B B B, Envelope C M F C D, Envelope, M.M.A., Envelope A N A E P, Envelope, D.I.F.: Envelope E S G H. optimal operation of multi-reservoir systems for increasing power generation using a seagull optimization algorithm and heading policy. Energy Rep. 7(2), 3703–3725 (2021)
22.
go back to reference Guo, X., Zhu, C., Hao, J., Zhang, S.: Multi-step wind speed prediction based on an improved multi-objective seagull optimization algorithm and a multi-kernel extreme learning machine. Appl. Intelligence: Int. J. Artif. Intell. Neural Networks Complex. Problem-Solving Technol. 53(13), 16445–16472 (2023)CrossRef Guo, X., Zhu, C., Hao, J., Zhang, S.: Multi-step wind speed prediction based on an improved multi-objective seagull optimization algorithm and a multi-kernel extreme learning machine. Appl. Intelligence: Int. J. Artif. Intell. Neural Networks Complex. Problem-Solving Technol. 53(13), 16445–16472 (2023)CrossRef
Metadata
Title
DA-RNN-Based Bus Arrival Time Prediction Model
Author
Zhixiao Li
Publication date
01-10-2024
Publisher
Springer US
Published in
International Journal of Intelligent Transportation Systems Research / Issue 3/2024
Print ISSN: 1348-8503
Electronic ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-024-00422-3

Premium Partners