Skip to main content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Neural Computing and Applications 34/2023

22-09-2023 | Original Article

DAerosol-NTM: applying deep learning and neural Turing machine in aerosol prediction

Authors: Zahra-Sadat Asaei-Moamam, Faramraz Safi-Esfahani, Seyedali Mirjalili, Reza Mohammadpour, Mohamad-Hosein Nadimi-Shahraki

Published in: Neural Computing and Applications | Issue 34/2023

Log in

Abstract

The pollution caused by aerosol (particulate matter) has a detrimental impact on urban environments, particularly in terms of socio-economic factors and public health. Aerosol particles, ranging in size from 1 nm to 100 µm, can easily penetrate organic tissues, carrying toxic gaseous compounds and minerals such as carbon monoxide, ozone, nitrogen dioxide, and sulfur dioxide. Recent advancements in neural network technology, combined with deep learning techniques, have made it possible to predict surges in aerosol pollution. In this study, we introduce DAerosol-NTM, a deep learning framework that utilizes the latest developments in neural Turing machines (NTMs) to access external memory. When compared with four baseline studies that employ multilayer perceptron (MLP), deep neural networks (DNNs), long short-term memory (LSTM), and deep LSTM (DLSTM), DAerosol-NTM significantly improves prediction accuracy by 8–31% and precision by 46–91% and reduces the root mean square error (RMSE) by 24–85%. Additionally, DAerosol-NTM incorporates up to 20 years of particulate matter data in its external storage, making it the first model capable of predicting aerosol pollution surges. By analyzing the data from the previous 96 h, the optimal time interval before and after the aerosol event (TIBAAE) enables the prediction of aerosol events within the following 24 h.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Neuro evolution of augmenting topologies (NEAT).
 
2
Chemical transport models (CTMs).
 
3
Weather research and forecasting (WRF) model coupled with chemistry (Chem).
 
4
Operational street pollution models (OSPM).
 
5
Nested air quality prediction modelling system (NAQPMS).
 
6
Generalized additive models (GAMs),
 
7
Autoregressive integrated moving average (ARIMA).
 
8
Geographically weighted regression (GWR).
 
9
Multi-layer regression (MLR).
 
10
Support vector machine (SVM).
 
11
Artificial neural networks (ANNs).
 
12
Fuzzy logic (FL).
 
13
Random forest (RF).
 
Literature
1.
go back to reference Nakata M, Sano I, Mukai S (2015) Relation between aerosol characteristics and impact factors on climate and environment. In: International geoscience and remote sensing symposium (IGARSS), 2015-November, pp 2342–2345 Nakata M, Sano I, Mukai S (2015) Relation between aerosol characteristics and impact factors on climate and environment. In: International geoscience and remote sensing symposium (IGARSS), 2015-November, pp 2342–2345
2.
go back to reference Qin Y, Yin Y, Wu Z, Shi L (2010) An observational study of atmospheric Aerosol in the Shijiazhuang area. In: 2010 2nd IITA international conference on geoscience and remote sensing, IITA-GRS 2010, 2, pp 328–331 Qin Y, Yin Y, Wu Z, Shi L (2010) An observational study of atmospheric Aerosol in the Shijiazhuang area. In: 2010 2nd IITA international conference on geoscience and remote sensing, IITA-GRS 2010, 2, pp 328–331
5.
go back to reference Kim S, Lee JM, Lee J, Seo J (2019) Deep-dust: predicting concentrations of fine dust in Seoul using LSTM. arXiv Preprint arXiv:​1901.​10106, pp 8–10 Kim S, Lee JM, Lee J, Seo J (2019) Deep-dust: predicting concentrations of fine dust in Seoul using LSTM. arXiv Preprint arXiv:​1901.​10106, pp 8–10
10.
11.
go back to reference Turing AM (1950) A quarterly review of psychology and philosophy I. Computing machinery and intelligence. Mind 59:433–460 MathSciNetCrossRef Turing AM (1950) A quarterly review of psychology and philosophy I. Computing machinery and intelligence. Mind 59:433–460 MathSciNetCrossRef
17.
go back to reference Weston J, Bordes A, Chopra S, Rush AM, Van Merriënboer B, Joulin A, Mikolov T (2016). Towards AI-complete question answering: a set of prerequisite toy tasks. In: 4th International conference on learning representations, ICLR 2016—conference track proceedings. https://​arxiv.​org/​abs/​1502.​05698 Weston J, Bordes A, Chopra S, Rush AM, Van Merriënboer B, Joulin A, Mikolov T (2016). Towards AI-complete question answering: a set of prerequisite toy tasks. In: 4th International conference on learning representations, ICLR 2016—conference track proceedings. https://​arxiv.​org/​abs/​1502.​05698
22.
go back to reference Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127 CrossRef Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127 CrossRef
24.
go back to reference Zhao J, Peng G (2011) NEAT versus PSO for evolving autonomous multi-agent coordination on pursuit-evasion problem. Lecture Notes in Electrical Engineering, vol 2, 711–717 Zhao J, Peng G (2011) NEAT versus PSO for evolving autonomous multi-agent coordination on pursuit-evasion problem. Lecture Notes in Electrical Engineering, vol 2, 711–717
29.
go back to reference Raturi R, Prasad JR (2018) Recognition of future air quality index using artificial neural network. Int Res J Eng Technol (IRJET) 5:2395–0056 Raturi R, Prasad JR (2018) Recognition of future air quality index using artificial neural network. Int Res J Eng Technol (IRJET) 5:2395–0056
31.
go back to reference Kök I, Şimşek MU, Özdemir S (2017) A deep learning model for air quality prediction in smart cities. In: Proceedings—2017 IEEE international conference on big data, big data 2017, 2018-Jan, 1983–1990 Kök I, Şimşek MU, Özdemir S (2017) A deep learning model for air quality prediction in smart cities. In: Proceedings—2017 IEEE international conference on big data, big data 2017, 2018-Jan, 1983–1990
32.
go back to reference Beheshti S, Khosroshahi K (2017) Study of the ability of various types of artificial neural networks in predicting the amount of CO, NO2, and SO2 pollutants in the metropolitan area of Tabriz. In: Fourth international conference on planning and management Beheshti S, Khosroshahi K (2017) Study of the ability of various types of artificial neural networks in predicting the amount of CO, NO2, and SO2 pollutants in the metropolitan area of Tabriz. In: Fourth international conference on planning and management
35.
go back to reference Farhadi R, Hadavifar M (2016) Prediction of air pollutant concentrations in Tehran based on climatic factors using artificial neural network. In: National conference on research and technology findings in natural and agricultural ecosystems Farhadi R, Hadavifar M (2016) Prediction of air pollutant concentrations in Tehran based on climatic factors using artificial neural network. In: National conference on research and technology findings in natural and agricultural ecosystems
40.
go back to reference Organización de las Naciones Unidas. (2018). World urbanization prospects 2018. In: Department of economic and social affairs. World Population Prospects 2018 Organización de las Naciones Unidas. (2018). World urbanization prospects 2018. In: Department of economic and social affairs. World Population Prospects 2018
43.
go back to reference Vallero D (2014) Fundamentals of air pollution—Daniel Vallero—Google Books. Academic Press Vallero D (2014) Fundamentals of air pollution—Daniel Vallero—Google Books. Academic Press
45.
go back to reference Brownlee J (2018) How to develop LSTM models for time series forecasting. Mach Learn Mastery 14:1–77 Brownlee J (2018) How to develop LSTM models for time series forecasting. Mach Learn Mastery 14:1–77
46.
go back to reference Zocca V, Spacagna G, Slater D, Roelants P (2017) Python deep learning—Google Books. Packt Publishing Zocca V, Spacagna G, Slater D, Roelants P (2017) Python deep learning—Google Books. Packt Publishing
47.
go back to reference Brownlee J (2016) Deep learning with Python: develop deep learning models on Theano and TensorFlow using Keras in deep learning with Python Brownlee J (2016) Deep learning with Python: develop deep learning models on Theano and TensorFlow using Keras in deep learning with Python
48.
go back to reference Vasilev I, Slater D, Spacagna G, Roelants P, Zocca V (2019) Python deep learning: exploring deep learning techniques and neural network—Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants Valentino Zocca—Google Books. Packt Publishing Vasilev I, Slater D, Spacagna G, Roelants P, Zocca V (2019) Python deep learning: exploring deep learning techniques and neural network—Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants Valentino Zocca—Google Books. Packt Publishing
49.
go back to reference Brownlee J (2020) Deep learning with Python: develop deep learning models on Theano and Jason Brownlee—Google Sách Brownlee J (2020) Deep learning with Python: develop deep learning models on Theano and Jason Brownlee—Google Sách
50.
go back to reference Hossain E, Shariff MAU, Hossain MS, Andersson K (2020) A novel deep learning approach to predict air quality index. In: Proceedings of international conference on trends in computational and cognitive engineering, pp 367–381 Hossain E, Shariff MAU, Hossain MS, Andersson K (2020) A novel deep learning approach to predict air quality index. In: Proceedings of international conference on trends in computational and cognitive engineering, pp 367–381
51.
go back to reference Jamal A, Nodehi RN (2017) Predicting air quality index based on meteorological data: a comparison of regression analysis, artificial neural networks and decision tree. J Air Pollut Health 2(1) Jamal A, Nodehi RN (2017) Predicting air quality index based on meteorological data: a comparison of regression analysis, artificial neural networks and decision tree. J Air Pollut Health 2(1)
55.
go back to reference Hochreiter S, Urgen Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):17351780 CrossRef Hochreiter S, Urgen Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):17351780 CrossRef
60.
61.
go back to reference Yao K, Peng B, Zhang Y, Yu D, Zweig G, Shi Y (2014) Spoken language understanding using long short-term memory neural networks. In: 2014 IEEE Spoken Language Technology Workshop (SLT), pp. 189–194 Yao K, Peng B, Zhang Y, Yu D, Zweig G, Shi Y (2014) Spoken language understanding using long short-term memory neural networks. In: 2014 IEEE Spoken Language Technology Workshop (SLT), pp. 189–194
63.
go back to reference Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp 6645–6649 Graves A, Mohamed A, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp 6645–6649
65.
go back to reference Liu Y, Zheng H, Feng X, Chen Z (2017) Short-term traffic flow prediction with Conv-LSTM. In: 2017 9th international conference on wireless communications and signal processing, WCSP 2017—proceedings, 2017-Jan, 1–6 Liu Y, Zheng H, Feng X, Chen Z (2017) Short-term traffic flow prediction with Conv-LSTM. In: 2017 9th international conference on wireless communications and signal processing, WCSP 2017—proceedings, 2017-Jan, 1–6
Metadata
Title
DAerosol-NTM: applying deep learning and neural Turing machine in aerosol prediction
Authors
Zahra-Sadat Asaei-Moamam
Faramraz Safi-Esfahani
Seyedali Mirjalili
Reza Mohammadpour
Mohamad-Hosein Nadimi-Shahraki
Publication date
22-09-2023
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 34/2023
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-08868-4

Other articles of this Issue 34/2023

Neural Computing and Applications 34/2023 Go to the issue

Premium Partner