Skip to main content
Top

2020 | OriginalPaper | Chapter

6. Damage Growth Monitoring in Composite Plates

Author : Ranjan Ganguli

Published in: Structural Health Monitoring

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Composites play an important role in modern industry, especially in aerospace structures because of their high specific strength and specific stiffness values [1]. Structural health monitoring of composites is, therefore, an important area of current research [2]. This chapter investigates the detection of matrix cracks and delamination in composite plates while adding material uncertainty. Section 6.1 presents background literature to motivate this chapter. Section 6.2 presents the composite plate model and the matrix crack model. Section 6.3 validates these models with published work. Section 6.4 presents numerical results for deflection and frequency for damaged plates while accounting for uncertainty. Section 6.5 presents the delamination model. Section 6.5 shows the results of matrix crack saturation and delamination on the composite plate system properties and evaluates the suitability of these damage indicators for uncertainty quantification. Finally, Sect. 6.7 presents the summary of this chapter. The content of this chapter is adapted from [3] and [4].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ye, L., Lu, Y., Su, Z., & Meng, G. (2005). Functionalized composite structures for new generation airframes: a review. Composites Science and Technology, 65(9), 1436–1446.CrossRef Ye, L., Lu, Y., Su, Z., & Meng, G. (2005). Functionalized composite structures for new generation airframes: a review. Composites Science and Technology, 65(9), 1436–1446.CrossRef
2.
go back to reference Staszewski, W. J., Mahzan, S., & Traynor, R. (2009). Health monitoring of aerospace composite structures—Active and passive approach. Composites Science and Technology, 69, 1678–1685.CrossRef Staszewski, W. J., Mahzan, S., & Traynor, R. (2009). Health monitoring of aerospace composite structures—Active and passive approach. Composites Science and Technology, 69, 1678–1685.CrossRef
3.
go back to reference Gayathri, P., Umesh, K., & Ganguli, R. (2010). Effect of matrix cracking and material uncertainty on composite plates. Reliability Engineering and System Safety, 95(7), 716–728.CrossRef Gayathri, P., Umesh, K., & Ganguli, R. (2010). Effect of matrix cracking and material uncertainty on composite plates. Reliability Engineering and System Safety, 95(7), 716–728.CrossRef
4.
go back to reference Gayathri, P., Umesh, K., & Ganguli, R. (2011). Material uncertainty effects on frequency of composite plates with matrix crack induced delaminations. Structural Durability and Health Monitoring, 7(1–2), 119–137. Gayathri, P., Umesh, K., & Ganguli, R. (2011). Material uncertainty effects on frequency of composite plates with matrix crack induced delaminations. Structural Durability and Health Monitoring, 7(1–2), 119–137.
5.
go back to reference Sun, C. T., & Jianxin, T. (1998). Prediction of failure envelopes and stress/strain behavior of composite laminates. Composites Science and Technology, 58, 1125–1136. Sun, C. T., & Jianxin, T. (1998). Prediction of failure envelopes and stress/strain behavior of composite laminates. Composites Science and Technology, 58, 1125–1136.
6.
go back to reference Whitney, J. M. (2005). On the ‘Ply discount method’ for determining effective thermo-elastic constants of laminates containing transverse cracks. Composites: Part A Applied Science and Technology, 36, 1347–1354. Whitney, J. M. (2005). On the ‘Ply discount method’ for determining effective thermo-elastic constants of laminates containing transverse cracks. Composites: Part A Applied Science and Technology, 36, 1347–1354.
7.
go back to reference Highsmith, A. L., & Reifsnider, K. L. (1982). Stiffness reduction mechanics in composite laminates. Damage in Composite Materials, American Society for Testing and Materials, New York, 775, 103–117. Highsmith, A. L., & Reifsnider, K. L. (1982). Stiffness reduction mechanics in composite laminates. Damage in Composite Materials, American Society for Testing and Materials, New York, 775, 103–117.
8.
go back to reference Laws, N., & Dvorak, G. J. (1988). Progressive transverse cracking in composite laminates. Journal of Composite Materials, 22, 900–916.CrossRef Laws, N., & Dvorak, G. J. (1988). Progressive transverse cracking in composite laminates. Journal of Composite Materials, 22, 900–916.CrossRef
9.
go back to reference Lim, S. G., & Hong, C. S. (1989). Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites. Journal of Composite Materials, 23, 695–713.CrossRef Lim, S. G., & Hong, C. S. (1989). Prediction of transverse cracking and stiffness reduction in cross-ply laminated composites. Journal of Composite Materials, 23, 695–713.CrossRef
10.
go back to reference Lee, J. W., & Daniel, I. M. (1990). Progressive transverse cracking of crossply composite laminates. Journal of Composite Materials, 24, 1225–1243.CrossRef Lee, J. W., & Daniel, I. M. (1990). Progressive transverse cracking of crossply composite laminates. Journal of Composite Materials, 24, 1225–1243.CrossRef
11.
go back to reference Hashin, Z. (1985). Analysis of cracked laminates: A variational approach. Mechanics of Materials, 4, 121–136.CrossRef Hashin, Z. (1985). Analysis of cracked laminates: A variational approach. Mechanics of Materials, 4, 121–136.CrossRef
12.
go back to reference Gottesman, T., Hashin, Z., & Brull, M. A. (1980). Effective elastic moduli of cracked fibre composites. Advanced composite materials: Proceedings of the 3rd International Conference in Composite Materials, 1, 749–758. Gottesman, T., Hashin, Z., & Brull, M. A. (1980). Effective elastic moduli of cracked fibre composites. Advanced composite materials: Proceedings of the 3rd International Conference in Composite Materials, 1, 749–758.
13.
go back to reference Gudmundson, P., & Zang, W. (1993). An analytical model for thermoelastic properties of composite laminates containing transverse matrix cracks. International Journal of Solids and Structures, 30, 3211–3231.MATHCrossRef Gudmundson, P., & Zang, W. (1993). An analytical model for thermoelastic properties of composite laminates containing transverse matrix cracks. International Journal of Solids and Structures, 30, 3211–3231.MATHCrossRef
14.
go back to reference Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34, 2035–2060.MATHCrossRef Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34, 2035–2060.MATHCrossRef
15.
go back to reference Wang, H., Ogin, S. L., Thorne, A. M., & Reed, G. T. (2006). Interaction between optical fibre sensors and matrix cracks in cross-ply GFRP laminates. Part 2: Crack detection. Composites Science and Technology, 66, 2367–2378. Wang, H., Ogin, S. L., Thorne, A. M., & Reed, G. T. (2006). Interaction between optical fibre sensors and matrix cracks in cross-ply GFRP laminates. Part 2: Crack detection. Composites Science and Technology, 66, 2367–2378.
16.
go back to reference Kramb, V. A., John, R., & Stubbs, D. A. (2001). A study of the damage progression in an oxide/oxide ceramic matrix composite using ultrasonic C-scans. Composites Science and Technology, 61, 1561–1570.CrossRef Kramb, V. A., John, R., & Stubbs, D. A. (2001). A study of the damage progression in an oxide/oxide ceramic matrix composite using ultrasonic C-scans. Composites Science and Technology, 61, 1561–1570.CrossRef
17.
go back to reference Todokori, A., Omagiri, K., Shimamura, Y., & Kobayashi, H. (2006). Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Composites Science and Technology, 66, 1539–1545.CrossRef Todokori, A., Omagiri, K., Shimamura, Y., & Kobayashi, H. (2006). Matrix crack detection of CFRP using electrical resistance change with integrated surface probes. Composites Science and Technology, 66, 1539–1545.CrossRef
18.
go back to reference Boyer, C., Beakou, A., & Lemaire, M. (1997). Design of a composite structure to achieve a specified reliability level. Reliability Engineering and System Safety, 56, 273–283.CrossRef Boyer, C., Beakou, A., & Lemaire, M. (1997). Design of a composite structure to achieve a specified reliability level. Reliability Engineering and System Safety, 56, 273–283.CrossRef
19.
go back to reference Miki, M., Murotsu, Y., Tanaka, T., & Shao, S. (1997). Reliability-based optimization of fibrous laminated composites. Reliability Engineering and System Safety, 56, 285–290.CrossRef Miki, M., Murotsu, Y., Tanaka, T., & Shao, S. (1997). Reliability-based optimization of fibrous laminated composites. Reliability Engineering and System Safety, 56, 285–290.CrossRef
20.
go back to reference Guedes, Soares C. (1997). Reliability of components in composite materials. Reliability Engineering and System Safety, 55, 171–177.CrossRef Guedes, Soares C. (1997). Reliability of components in composite materials. Reliability Engineering and System Safety, 55, 171–177.CrossRef
21.
go back to reference Sentler, L. (1997). Reliability of high performance fibre composites. Reliability Engineering and System Safety, 56, 249–256.CrossRef Sentler, L. (1997). Reliability of high performance fibre composites. Reliability Engineering and System Safety, 56, 249–256.CrossRef
22.
go back to reference Sutherland, L. S., & Guedes, Soares C. (1997). Review of probabilistic models of the strength of composite materials. Reliability Engineering and System Safety, 56, 183–196.CrossRef Sutherland, L. S., & Guedes, Soares C. (1997). Review of probabilistic models of the strength of composite materials. Reliability Engineering and System Safety, 56, 183–196.CrossRef
23.
go back to reference Minnetyan, L., & Abdi, F. (2008) Probabilistic assessment of matrix crack size and density in composite structures. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 7–10, 2008, Schaumburg, IL;AIAA (pp. 2008–2299). Minnetyan, L., & Abdi, F. (2008) Probabilistic assessment of matrix crack size and density in composite structures. In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 7–10, 2008, Schaumburg, IL;AIAA (pp. 2008–2299).
24.
go back to reference Lamon, J. (2009). Stochastic approach to multiple cracking in composite systems based on the extreme-values theory. Composites Science and Technology, 69, 1607–1614.CrossRef Lamon, J. (2009). Stochastic approach to multiple cracking in composite systems based on the extreme-values theory. Composites Science and Technology, 69, 1607–1614.CrossRef
25.
go back to reference Nairn, J. A., & Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. International Journal of Fracture, 57(1), 1–24.CrossRef Nairn, J. A., & Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. International Journal of Fracture, 57(1), 1–24.CrossRef
26.
go back to reference Mao, H., & Mahadevan, S. (2002). Fatigue damage modelling of composite materials. Composite Structures, 58(4), 405–410.CrossRef Mao, H., & Mahadevan, S. (2002). Fatigue damage modelling of composite materials. Composite Structures, 58(4), 405–410.CrossRef
27.
go back to reference Roy, N., & Ganguli, R. (2005). Helicopter rotor blade frequency evolution with damage growth and signal processing. Journal of Sound and Vibration, 283(3–5), 821–851.CrossRef Roy, N., & Ganguli, R. (2005). Helicopter rotor blade frequency evolution with damage growth and signal processing. Journal of Sound and Vibration, 283(3–5), 821–851.CrossRef
28.
go back to reference Mohanty, S., Chattopadhyay, A., Wei, J., & Peralta, P. (2009). Real time damage state estimation and condition based residual useful life estimation of a metallic specimen under biaxial loading. Structural Durability and Health Monitoring, 5(1), 33–36. Mohanty, S., Chattopadhyay, A., Wei, J., & Peralta, P. (2009). Real time damage state estimation and condition based residual useful life estimation of a metallic specimen under biaxial loading. Structural Durability and Health Monitoring, 5(1), 33–36.
29.
go back to reference Giridhara, G., & Gopalakrishnan, S. (2009). Frequency domain based damage index for structural health monitoring. Structural Durability and Health Monitoring, 5(1), 1–32. Giridhara, G., & Gopalakrishnan, S. (2009). Frequency domain based damage index for structural health monitoring. Structural Durability and Health Monitoring, 5(1), 1–32.
30.
go back to reference Raghuprasad, B., & K., Lakshmanan, N., Gopalakrishnan, N., Muthumani, K., (2008). Sensitivity of eigen values to damage and its identification. Structural Durability and Health Monitoring, 4(3), 117–144. Raghuprasad, B., & K., Lakshmanan, N., Gopalakrishnan, N., Muthumani, K., (2008). Sensitivity of eigen values to damage and its identification. Structural Durability and Health Monitoring, 4(3), 117–144.
31.
go back to reference Sinou, Jean-Jacques. (2009). Damage assessment based on the frequencies’ ratio surfaces intersection method for the identification of the crack depth. Location and Orientation, Structural Durability and Health Monitoring, 3(3), 133–164. Sinou, Jean-Jacques. (2009). Damage assessment based on the frequencies’ ratio surfaces intersection method for the identification of the crack depth. Location and Orientation, Structural Durability and Health Monitoring, 3(3), 133–164.
32.
go back to reference Kashtalyan, M., & Soutis, C. (2000). The effect of delaminations induced by transverse cracks and splits on the stiffness properties of composite laminates. Composites Part A-Applied Science and Manufacturing, 31(2), 107–119.CrossRef Kashtalyan, M., & Soutis, C. (2000). The effect of delaminations induced by transverse cracks and splits on the stiffness properties of composite laminates. Composites Part A-Applied Science and Manufacturing, 31(2), 107–119.CrossRef
33.
go back to reference Shahid, I., & Chang, F. K. (1995). An accumulative damage model for tensile and shear failures of laminated composite plates. Journal of Composite Materials, 29(7), 926–981.CrossRef Shahid, I., & Chang, F. K. (1995). An accumulative damage model for tensile and shear failures of laminated composite plates. Journal of Composite Materials, 29(7), 926–981.CrossRef
34.
go back to reference Wang, J., & Karihaloo, B. L. (1997). Matrix crack-induce delamination in composite laminates under transverse loading. Composite Structures, 38(1–4), 661–666.CrossRef Wang, J., & Karihaloo, B. L. (1997). Matrix crack-induce delamination in composite laminates under transverse loading. Composite Structures, 38(1–4), 661–666.CrossRef
35.
go back to reference Tay, T. E., Tan, S. H. N., Tan, V. B. C., & Gosse, J. H. (2005). Damage progression by the element- failure method (EFM) and strain invariant failure theory (SIFT). Composites Science and Technology, 65(6), 935–944.CrossRef Tay, T. E., Tan, S. H. N., Tan, V. B. C., & Gosse, J. H. (2005). Damage progression by the element- failure method (EFM) and strain invariant failure theory (SIFT). Composites Science and Technology, 65(6), 935–944.CrossRef
36.
go back to reference Turon, A., Costa, J., Maimi, P., Trias, D., & Mayugo, J. F. (2005). A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part I: Formulation. Composites Science and Technology, 65(14), 2039–2048. Turon, A., Costa, J., Maimi, P., Trias, D., & Mayugo, J. F. (2005). A progressive damage model for unidirectional fibre-reinforced composites based on fibre fragmentation. Part I: Formulation. Composites Science and Technology, 65(14), 2039–2048.
37.
go back to reference Zhao, G. P., & Cho, C. D. (2007) Damage initiation and propogation in composite shells subjected to impact. Composite Structures, 78, 91–10. Zhao, G. P., & Cho, C. D. (2007) Damage initiation and propogation in composite shells subjected to impact. Composite Structures, 78, 91–10.
38.
go back to reference Suyemasu, H., Kondo, A., Itatani, K., & Nozue, A. (2001). A probabilistic approach to the toughening mechanism in short-fiber-reinforced ceramic matrix composites. Composites Science and Technology, 61(2), 281–288.CrossRef Suyemasu, H., Kondo, A., Itatani, K., & Nozue, A. (2001). A probabilistic approach to the toughening mechanism in short-fiber-reinforced ceramic matrix composites. Composites Science and Technology, 61(2), 281–288.CrossRef
39.
go back to reference Zhang, G., & Thompson, M. R. (2005). Reduced fibre breakage in a glass-fibre reinforced thermoplastic through foaming. Composites Science and Technology, 65(14), 2240–2249.CrossRef Zhang, G., & Thompson, M. R. (2005). Reduced fibre breakage in a glass-fibre reinforced thermoplastic through foaming. Composites Science and Technology, 65(14), 2240–2249.CrossRef
40.
go back to reference Reddy, J. N. (2000). Mechanics of laminated composite plates. Boca Raton, Florida: CRC Press. Reddy, J. N. (2000). Mechanics of laminated composite plates. Boca Raton, Florida: CRC Press.
41.
go back to reference Cen, S., Soh, A. K., Long, Y. Q., & Yao, Z. (2002). A new 4-node quadrilateral FE model with variable electrical degrees of freedom for the analysis of piezoelectric laminated composite plates. Composite Structures, 58, 583–599.CrossRef Cen, S., Soh, A. K., Long, Y. Q., & Yao, Z. (2002). A new 4-node quadrilateral FE model with variable electrical degrees of freedom for the analysis of piezoelectric laminated composite plates. Composite Structures, 58, 583–599.CrossRef
42.
go back to reference Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRef Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRef
43.
go back to reference Pawar, P. M., & Ganguli, R. (2007). On the effect of progressive damage on composite helicopter rotor system behavior. Composite Structures, 78(3), 410–423.CrossRef Pawar, P. M., & Ganguli, R. (2007). On the effect of progressive damage on composite helicopter rotor system behavior. Composite Structures, 78(3), 410–423.CrossRef
44.
go back to reference Boller, C. (2000). Next generation structural health monitoring and its integration into aircraft design. International Journal of Systems Science, 31(11), 1333–1349.MATHCrossRef Boller, C. (2000). Next generation structural health monitoring and its integration into aircraft design. International Journal of Systems Science, 31(11), 1333–1349.MATHCrossRef
45.
go back to reference Cattarius, J., & Inman, D. J. (2000). Experimental verification of intlligent fault detection in rotor blades. International Journal of Systems Science, 31(11), 1375–1379.MATHCrossRef Cattarius, J., & Inman, D. J. (2000). Experimental verification of intlligent fault detection in rotor blades. International Journal of Systems Science, 31(11), 1375–1379.MATHCrossRef
Metadata
Title
Damage Growth Monitoring in Composite Plates
Author
Ranjan Ganguli
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4988-5_6

Premium Partners