Skip to main content
Top

2017 | OriginalPaper | Chapter

4. Damage in Vascular Tissues and Its Modeling

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present chapter reviews vessel wall histology and summarizes relevant continuum mechanical concepts to study mechanics-induced tissue damage. As long as the accumulated damage does not trigger strain localizations, the standard nonpolar continuum mechanical framework is applicable. As an example, a damage model for collagenous tissue is discussed and used to predict collagen damage in the aneurysm wall at supra-physiologic loading. The physical meaning of model parameters allow their straight forward identification from independent mechanical and histological experimental data. In contrast, if damage accumulates until the material’s stiffness looses its strong ellipticity, more advanced continuum mechanical approaches are required. Specifically, modeling vascular failure by a fracture process zone is discussed, such that initialization and coalescence of micro-defects is mechanically represented by a phenomenological cohesive traction separation law. Failure of ventricular tissue due to deep penetration illustrates the applicability of the model. Besides appropriate continuum mechanical approaches, laboratory experiments that are sensitive to constitutive model parameters and ensure controlled failure propagation are crucial for a robust parameter identification of failure models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kachanov, L. (2013). Introduction to continuum damage mechanics (vol. 10). Springer Science & Business Media. Kachanov, L. (2013). Introduction to continuum damage mechanics (vol. 10). Springer Science & Business Media.
2.
go back to reference Viano, D. C., King, A. I., Melvin, J. W., & Weber, K. (1989). Injury biomechanics research: An essential element in the prevention of trauma. Journal of Biomechanics, 22(5), 403–417.CrossRef Viano, D. C., King, A. I., Melvin, J. W., & Weber, K. (1989). Injury biomechanics research: An essential element in the prevention of trauma. Journal of Biomechanics, 22(5), 403–417.CrossRef
3.
go back to reference Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium.
4.
go back to reference Bigoni, D., & Hueckel, T. (1991). Uniqueness and localization—I. Associative and non-associative elastoplasticity. International Journal of Solids and Structures, 28(2), 197–213.MathSciNetCrossRefMATH Bigoni, D., & Hueckel, T. (1991). Uniqueness and localization—I. Associative and non-associative elastoplasticity. International Journal of Solids and Structures, 28(2), 197–213.MathSciNetCrossRefMATH
5.
go back to reference Fu, Y. B., & Ogden, R. W. (2001). Nonlinear elasticity: Theory and applications (vol. 283). Cambridge University Press. Fu, Y. B., & Ogden, R. W. (2001). Nonlinear elasticity: Theory and applications (vol. 283). Cambridge University Press.
6.
go back to reference Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: Solid mechanics (vol. 2). Butterworth-heinemann. Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: Solid mechanics (vol. 2). Butterworth-heinemann.
7.
go back to reference Bažant, Z. P. (2002). Concrete fracture models: Testing and practice. Engineering Fracture Mechanics, 69(2), 165–205.CrossRef Bažant, Z. P. (2002). Concrete fracture models: Testing and practice. Engineering Fracture Mechanics, 69(2), 165–205.CrossRef
8.
go back to reference Clark, J. M., & Glagov, S. (1985). Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis, Thrombosis, and Vascular Biology, 5(1), 19–34.CrossRef Clark, J. M., & Glagov, S. (1985). Transmural organization of the arterial media. The lamellar unit revisited. Arteriosclerosis, Thrombosis, and Vascular Biology, 5(1), 19–34.CrossRef
9.
go back to reference Carey, D. J. (1991). Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annual Review of Physiology, 53(1), 161–177.CrossRef Carey, D. J. (1991). Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annual Review of Physiology, 53(1), 161–177.CrossRef
10.
go back to reference Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D., et al. (1995). Molecular biology of the cell. Trends in Biochemical Sciences, 20(5), 210–210.CrossRef Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J. D., et al. (1995). Molecular biology of the cell. Trends in Biochemical Sciences, 20(5), 210–210.CrossRef
11.
go back to reference Humphrey, J. D. (1999). Remodeling of a collagenous tissue at fixed lengths. Journal of Biomechanical Engineering, 121(6), 591–597.CrossRef Humphrey, J. D. (1999). Remodeling of a collagenous tissue at fixed lengths. Journal of Biomechanical Engineering, 121(6), 591–597.CrossRef
12.
go back to reference Nissen, R., Cardinale, G. J., & Udenfriend, S. (1978). Increased turnover of arterial collagen in hypertensive rats. Proceedings of the National Academy of Sciences, 75(1), 451–453.CrossRef Nissen, R., Cardinale, G. J., & Udenfriend, S. (1978). Increased turnover of arterial collagen in hypertensive rats. Proceedings of the National Academy of Sciences, 75(1), 451–453.CrossRef
13.
go back to reference Hulmes, D. J. S. (2008). Collagen diversity, synthesis and assembly. In P. Fratzl (Ed.), Collagen: Structure and mechanics (pp. 15–47). New York: Springer Science+Business Media.CrossRef Hulmes, D. J. S. (2008). Collagen diversity, synthesis and assembly. In P. Fratzl (Ed.), Collagen: Structure and mechanics (pp. 15–47). New York: Springer Science+Business Media.CrossRef
14.
go back to reference Roach, M. R., & Burton, A. C. (1957). The reason for the shape of the distensibility curves of arteries. Canadian Journal of Biochemistry and Physiology, 35(8), 681–690.CrossRef Roach, M. R., & Burton, A. C. (1957). The reason for the shape of the distensibility curves of arteries. Canadian Journal of Biochemistry and Physiology, 35(8), 681–690.CrossRef
15.
go back to reference Bergel, D. H. (1961). The static elastic properties of the arterial wall. The Journal of Physiology, 156(3), 445.CrossRef Bergel, D. H. (1961). The static elastic properties of the arterial wall. The Journal of Physiology, 156(3), 445.CrossRef
16.
go back to reference Langewouters, G. J., Wesseling, K. H., & Goedhard, W. J. A. (1984). The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. Journal of Biomechanics, 17(6), 425–435.CrossRef Langewouters, G. J., Wesseling, K. H., & Goedhard, W. J. A. (1984). The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. Journal of Biomechanics, 17(6), 425–435.CrossRef
17.
go back to reference Sokolis, D. P. (2007). Passive mechanical properties and structure of the aorta: Segmental analysis. Acta Physiologica, 190(4), 277–289.CrossRef Sokolis, D. P. (2007). Passive mechanical properties and structure of the aorta: Segmental analysis. Acta Physiologica, 190(4), 277–289.CrossRef
18.
go back to reference Fung, Y.-C. (2013). Biomechanics: Mechanical properties of living tissues. Springer Science & Business Media. Fung, Y.-C. (2013). Biomechanics: Mechanical properties of living tissues. Springer Science & Business Media.
19.
go back to reference Humphrey, J. D. (2013). Cardiovascular solid mechanics: Cells, tissues, and organs. Springer Science & Business Media. Humphrey, J. D. (2013). Cardiovascular solid mechanics: Cells, tissues, and organs. Springer Science & Business Media.
20.
go back to reference Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6), 15–35.CrossRef Gasser, T. C., Ogden, R. W., & Holzapfel, G. A. (2006). Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 3(6), 15–35.CrossRef
21.
go back to reference Vidal, B. D. C., Mello, M. L. S., & Pimentel, É. R. (1982). Polarization microscopy and microspectrophotometry of sirius red, picrosirius and chlorantine fast red aggregates and of their complexes with collagen. The Histochemical Journal, 14(6), 857–878. Vidal, B. D. C., Mello, M. L. S., & Pimentel, É. R. (1982). Polarization microscopy and microspectrophotometry of sirius red, picrosirius and chlorantine fast red aggregates and of their complexes with collagen. The Histochemical Journal, 14(6), 857–878.
22.
go back to reference Lindeman, J. H. N., Ashcroft, B. A., Beenakker, J. W. M., Koekkoek, N. B. R., Prins, F. A., Tielemans, J. F., et al. (2010). Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in marfan syndrome. Proceedings of the National Academy of Sciences, 107(2), 862–865.CrossRef Lindeman, J. H. N., Ashcroft, B. A., Beenakker, J. W. M., Koekkoek, N. B. R., Prins, F. A., Tielemans, J. F., et al. (2010). Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in marfan syndrome. Proceedings of the National Academy of Sciences, 107(2), 862–865.CrossRef
23.
go back to reference Weber, K. T., Pick, R., Silver, M. A., Moe, G. W., Janicki, J. S., Zucker, I. H., et al. (1990). Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation, 82(4), 1387–1401.CrossRef Weber, K. T., Pick, R., Silver, M. A., Moe, G. W., Janicki, J. S., Zucker, I. H., et al. (1990). Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation, 82(4), 1387–1401.CrossRef
24.
go back to reference Canham, P. B., Finlay, H. M., Dixon, J. G., Boughner, D. R., & Chen, A. (1989). Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovascular Research, 23(11), 973–982.CrossRef Canham, P. B., Finlay, H. M., Dixon, J. G., Boughner, D. R., & Chen, A. (1989). Measurements from light and polarised light microscopy of human coronary arteries fixed at distending pressure. Cardiovascular Research, 23(11), 973–982.CrossRef
25.
go back to reference Canham, P. B., & Finlay, H. M. (2004). Morphometry of medial gaps of human brain artery branches. Stroke, 35(5), 1153–1157.CrossRef Canham, P. B., & Finlay, H. M. (2004). Morphometry of medial gaps of human brain artery branches. Stroke, 35(5), 1153–1157.CrossRef
26.
go back to reference Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., & Roy, J. (2012). Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomaterialia, 8(8), 3091–3103.CrossRef Gasser, T. C., Gallinetti, S., Xing, X., Forsell, C., Swedenborg, J., & Roy, J. (2012). Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomaterialia, 8(8), 3091–3103.CrossRef
27.
go back to reference Diamant, J., Keller, A., Baer, E., Litt, M., & Arridge, R. G. C. (1972). Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proceedings of the Royal Society of London B: Biological Sciences, 180(1060), 293–315.CrossRef Diamant, J., Keller, A., Baer, E., Litt, M., & Arridge, R. G. C. (1972). Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proceedings of the Royal Society of London B: Biological Sciences, 180(1060), 293–315.CrossRef
28.
go back to reference Gathercole, L. J., Keller, A., & Shah, J. S. (1974). The periodic wave pattern in native tendon collagen: Correlation of polarizing with scanning electron microscopy. Journal of Microscopy, 102(1), 95–105.CrossRef Gathercole, L. J., Keller, A., & Shah, J. S. (1974). The periodic wave pattern in native tendon collagen: Correlation of polarizing with scanning electron microscopy. Journal of Microscopy, 102(1), 95–105.CrossRef
29.
go back to reference Bingham, C. (1974). An antipodally symmetric distribution on the sphere. The Annals of Statistics, 1201–1225. Bingham, C. (1974). An antipodally symmetric distribution on the sphere. The Annals of Statistics, 1201–1225.
30.
go back to reference Scott, J. E. (2003). Elasticity in extracellular matrix "shape modules" of tendon, cartilage, etc. a sliding proteoglycan-filament model. The Journal of Physiology, 553(2), 335–343.CrossRef Scott, J. E. (2003). Elasticity in extracellular matrix "shape modules" of tendon, cartilage, etc. a sliding proteoglycan-filament model. The Journal of Physiology, 553(2), 335–343.CrossRef
31.
go back to reference Scott, J. E. (2008). Cartilage is held together by elastic glycan strings. Physiological and pathological implications. Biorheology, 45(3–4), 209–217. Scott, J. E. (2008). Cartilage is held together by elastic glycan strings. Physiological and pathological implications. Biorheology, 45(3–4), 209–217.
32.
go back to reference Haverkamp, R. G., Williams, M. A. K., & Scott, J. E. (2005). Stretching single molecules of connective tissue glycans to characterize their shape-maintaining elasticity. Biomacromolecules, 6(3), 1816–1818.CrossRef Haverkamp, R. G., Williams, M. A. K., & Scott, J. E. (2005). Stretching single molecules of connective tissue glycans to characterize their shape-maintaining elasticity. Biomacromolecules, 6(3), 1816–1818.CrossRef
33.
go back to reference Liao, J., & Vesely, I. (2007). Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae. Journal of Biomechanics, 40(2), 390–398.CrossRef Liao, J., & Vesely, I. (2007). Skewness angle of interfibrillar proteoglycans increases with applied load on mitral valve chordae tendineae. Journal of Biomechanics, 40(2), 390–398.CrossRef
34.
go back to reference Robinson, P. S., Huang, T.-F., Kazam, E., Iozzo, R. V., Birk, D. E., & Soslowsky, L. J. (2005). Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. Journal of Biomechanical Engineering, 127(1), 181–185.CrossRef Robinson, P. S., Huang, T.-F., Kazam, E., Iozzo, R. V., Birk, D. E., & Soslowsky, L. J. (2005). Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. Journal of Biomechanical Engineering, 127(1), 181–185.CrossRef
35.
go back to reference Sasaki, N., & Odajima, S. (1996). Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. Journal of Biomechanics, 29(9), 1131–1136.CrossRef Sasaki, N., & Odajima, S. (1996). Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. Journal of Biomechanics, 29(9), 1131–1136.CrossRef
36.
go back to reference Fessel, G., & Snedeker, J. G. (2011). Equivalent stiffness after glycosaminoglycan depletion in tendon—an ultra-structural finite element model and corresponding experiments. Journal of Theoretical Biology, 268(1), 77–83.CrossRef Fessel, G., & Snedeker, J. G. (2011). Equivalent stiffness after glycosaminoglycan depletion in tendon—an ultra-structural finite element model and corresponding experiments. Journal of Theoretical Biology, 268(1), 77–83.CrossRef
37.
go back to reference Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., & Montevecchi, F. M. (2003). Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons—a computational study from molecular to microstructural level. Journal of Biomechanics, 36(10), 1555–1569.CrossRef Redaelli, A., Vesentini, S., Soncini, M., Vena, P., Mantero, S., & Montevecchi, F. M. (2003). Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons—a computational study from molecular to microstructural level. Journal of Biomechanics, 36(10), 1555–1569.CrossRef
38.
go back to reference Vesentini, S., Redaelli, A., & Montevecchi, F. M. (2005). Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. Journal of biomechanics, 38(3), 433–443. Vesentini, S., Redaelli, A., & Montevecchi, F. M. (2005). Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. Journal of biomechanics, 38(3), 433–443.
39.
go back to reference Rigozzi, S., Müller, R., & Snedeker, J. G. (2009). Local strain measurement reveals a varied regional dependence of tensile tendon mechanics on glycosaminoglycan content. Journal of Biomechanics, 42(10), 1547–1552.CrossRef Rigozzi, S., Müller, R., & Snedeker, J. G. (2009). Local strain measurement reveals a varied regional dependence of tensile tendon mechanics on glycosaminoglycan content. Journal of Biomechanics, 42(10), 1547–1552.CrossRef
40.
go back to reference Rigozzi, S., Müller, R., & Snedeker, J. G. (2010). Collagen fibril morphology and mechanical properties of the Achilles tendon in two inbred mouse strains. Journal of Anatomy, 216(6), 724–731.CrossRef Rigozzi, S., Müller, R., & Snedeker, J. G. (2010). Collagen fibril morphology and mechanical properties of the Achilles tendon in two inbred mouse strains. Journal of Anatomy, 216(6), 724–731.CrossRef
41.
go back to reference Vaishnav, R. N., Young, J. T., Janicki, J. S., & Patel, D. J. (1972). Nonlinear anisotropic elastic properties of the canine aorta. Biophysical Journal, 12(8), 1008.CrossRef Vaishnav, R. N., Young, J. T., Janicki, J. S., & Patel, D. J. (1972). Nonlinear anisotropic elastic properties of the canine aorta. Biophysical Journal, 12(8), 1008.CrossRef
42.
go back to reference Fung, Y. C., Fronek, K., & Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology-Heart and Circulatory Physiology, 237(5), H620–H631. Fung, Y. C., Fronek, K., & Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. American Journal of Physiology-Heart and Circulatory Physiology, 237(5), H620–H631.
43.
go back to reference Chuong, C. J., & Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering, 105(3), 268–274.CrossRef Chuong, C. J., & Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. Journal of Biomechanical Engineering, 105(3), 268–274.CrossRef
44.
go back to reference Takamizawa, K., & Hayashi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. Journal of Biomechanics, 20(1), 7–17.CrossRef Takamizawa, K., & Hayashi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. Journal of Biomechanics, 20(1), 7–17.CrossRef
45.
go back to reference Humphrey, J. D., Strumpf, R. K., & Yin, F. C. P. (1990). Determination of a constitutive relation for passive myocardium: I. A new functional form. Journal of Biomechanical Engineering, 112(3), 333–339.CrossRef Humphrey, J. D., Strumpf, R. K., & Yin, F. C. P. (1990). Determination of a constitutive relation for passive myocardium: I. A new functional form. Journal of Biomechanical Engineering, 112(3), 333–339.CrossRef
46.
go back to reference Lanir, Y. (1983). Constitutive equations for fibrous connective tissues. Journal of Biomechanics, 16(1), 1–12.CrossRef Lanir, Y. (1983). Constitutive equations for fibrous connective tissues. Journal of Biomechanics, 16(1), 1–12.CrossRef
47.
go back to reference Wuyts, F. L., Vanhuyse, V. J., Langewouters, G. J., Decraemer, W. F., Raman, E. R., & Buyle, S. (1995). Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. Physics in Medicine and Biology, 40(10), 1577.CrossRef Wuyts, F. L., Vanhuyse, V. J., Langewouters, G. J., Decraemer, W. F., Raman, E. R., & Buyle, S. (1995). Elastic properties of human aortas in relation to age and atherosclerosis: A structural model. Physics in Medicine and Biology, 40(10), 1577.CrossRef
48.
go back to reference Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of elasticity and the physical science of solids, 61(1-3), 1–48. Holzapfel, G. A., Gasser, T. C., & Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of elasticity and the physical science of solids, 61(1-3), 1–48.
49.
go back to reference Zulliger, M. A., Fridez, P., Hayashi, K., & Stergiopulos, N. (2004). A strain energy function for arteries accounting for wall composition and structure. Journal of Biomechanics, 37(7), 989–1000.CrossRef Zulliger, M. A., Fridez, P., Hayashi, K., & Stergiopulos, N. (2004). A strain energy function for arteries accounting for wall composition and structure. Journal of Biomechanics, 37(7), 989–1000.CrossRef
50.
go back to reference Christian, T. (2011). Gasser. An irreversible constitutive model for fibrous soft biological tissue: A 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomaterialia, 7(6), 2457–2466.CrossRef Christian, T. (2011). Gasser. An irreversible constitutive model for fibrous soft biological tissue: A 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomaterialia, 7(6), 2457–2466.CrossRef
51.
go back to reference Peña, J. A., Martínez, M. A., & Peña, E. (2011). A formulation to model the nonlinear viscoelastic properties of the vascular tissue. Acta Mechanica, 217(1–2), 63–74.CrossRefMATH Peña, J. A., Martínez, M. A., & Peña, E. (2011). A formulation to model the nonlinear viscoelastic properties of the vascular tissue. Acta Mechanica, 217(1–2), 63–74.CrossRefMATH
52.
go back to reference Gasser, T. C. (2011). A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. Journal of Biomechanics, 44(14), 2544–2550.CrossRef Gasser, T. C. (2011). A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. Journal of Biomechanics, 44(14), 2544–2550.CrossRef
53.
go back to reference Hardin, R. H., & Sloane, N. J. A. (1996). Mclaren’s improved snub cube and other new spherical designs in three dimensions. Discrete & Computational Geometry, 15(4), 429–441.MathSciNetCrossRefMATH Hardin, R. H., & Sloane, N. J. A. (1996). Mclaren’s improved snub cube and other new spherical designs in three dimensions. Discrete & Computational Geometry, 15(4), 429–441.MathSciNetCrossRefMATH
54.
go back to reference Gasser, T. C. (2010). Nonlinear elasticity of biological tissues with statistical fibre orientation. Journal of the Royal Society Interface, 7(47), 955–966.CrossRef Gasser, T. C. (2010). Nonlinear elasticity of biological tissues with statistical fibre orientation. Journal of the Royal Society Interface, 7(47), 955–966.CrossRef
55.
go back to reference Parry, D. A. D., Barnes, G. R. G., & Craig, A. S. (1978). A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proceedings of the Royal Society of London B: Biological Sciences, 203(1152), 305–321.CrossRef Parry, D. A. D., Barnes, G. R. G., & Craig, A. S. (1978). A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proceedings of the Royal Society of London B: Biological Sciences, 203(1152), 305–321.CrossRef
56.
go back to reference Liao, H., & Belkoff, S. M. (1999). A failure model for ligaments. Journal of Biomechanics, 32(2), 183–188.CrossRef Liao, H., & Belkoff, S. M. (1999). A failure model for ligaments. Journal of Biomechanics, 32(2), 183–188.CrossRef
57.
go back to reference Emery, J. L., Omens, J. H., & McCulloch, A. D. (1997). Biaxial mechanics of the passively overstretched left ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 272(5), H2299–H2305. Emery, J. L., Omens, J. H., & McCulloch, A. D. (1997). Biaxial mechanics of the passively overstretched left ventricle. American Journal of Physiology-Heart and Circulatory Physiology, 272(5), H2299–H2305.
58.
go back to reference Emery, J. L., Omens, J. H., & McCulloch, A. D. (1997). Strain softening in rat left ventricular myocardium. Journal of Biomechanical Engineering, 119(1), 6–12.CrossRef Emery, J. L., Omens, J. H., & McCulloch, A. D. (1997). Strain softening in rat left ventricular myocardium. Journal of Biomechanical Engineering, 119(1), 6–12.CrossRef
59.
go back to reference Oktay, H. S., Kang, T., Humphrey, J. D., & Bishop, G. G. (1991). Changes in the mechanical behavior of arteries following balloon angioplasty. In ASME Biomechanics Symposium AMD (120). Oktay, H. S., Kang, T., Humphrey, J. D., & Bishop, G. G. (1991). Changes in the mechanical behavior of arteries following balloon angioplasty. In ASME Biomechanics Symposium AMD (120).
60.
go back to reference Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: A bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606. Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: A bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606.
61.
go back to reference Abrahams, M. (1967). Mechanical behaviour of tendon in vitro. A preliminary report. Medical and Biological Engineering, 5, 433–443.CrossRef Abrahams, M. (1967). Mechanical behaviour of tendon in vitro. A preliminary report. Medical and Biological Engineering, 5, 433–443.CrossRef
62.
go back to reference Lanir, Y., & Sverdlik, A. (2002). Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. Journal of Biomechanical Engineering, 124(1), 78–84.CrossRef Lanir, Y., & Sverdlik, A. (2002). Time-dependent mechanical behavior of sheep digital tendons, including the effects of preconditioning. Journal of Biomechanical Engineering, 124(1), 78–84.CrossRef
63.
go back to reference Salunke, N. V., & Topoleski, L. D. (1996). Biomechanics of atherosclerotic plaque. Critical Reviews in Biomedical Engineering, 25(3), 243–285. Salunke, N. V., & Topoleski, L. D. (1996). Biomechanics of atherosclerotic plaque. Critical Reviews in Biomedical Engineering, 25(3), 243–285.
64.
go back to reference Hokanson, J., & Yazdani, S. (1997). A constitutive model of the artery with damage. Mechanics Research Communications, 24(2), 151–159.CrossRefMATH Hokanson, J., & Yazdani, S. (1997). A constitutive model of the artery with damage. Mechanics Research Communications, 24(2), 151–159.CrossRefMATH
65.
go back to reference Balzani, D., Schröder, J., & Gross, D. (2006). Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomaterialia, 2(6), 609–618.CrossRef Balzani, D., Schröder, J., & Gross, D. (2006). Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomaterialia, 2(6), 609–618.CrossRef
66.
go back to reference Calvo, B., Pena, E., Martins, P., Mascarenhas, T., Doblare, M., Jorge, R. M. N., et al. (2009). On modelling damage process in vaginal tissue. Journal of Biomechanics, 42(5), 642–651.CrossRef Calvo, B., Pena, E., Martins, P., Mascarenhas, T., Doblare, M., Jorge, R. M. N., et al. (2009). On modelling damage process in vaginal tissue. Journal of Biomechanics, 42(5), 642–651.CrossRef
67.
go back to reference Tanaka, E., & Yamada, H. (1990). An inelastic constitutive model of blood vessels. Acta Mechanica, 82(1–2), 21–30.CrossRefMATH Tanaka, E., & Yamada, H. (1990). An inelastic constitutive model of blood vessels. Acta Mechanica, 82(1–2), 21–30.CrossRefMATH
68.
go back to reference Gasser, T. C., & Holzapfel, G. A. (2002). A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Computational Mechanics, 29(4–5), 340–360.CrossRefMATH Gasser, T. C., & Holzapfel, G. A. (2002). A rate-independent elastoplastic constitutive model for biological fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Computational Mechanics, 29(4–5), 340–360.CrossRefMATH
69.
go back to reference Ionescu, I., Guilkey, J. E., Berzins, M., Kirby, R. M., & Weiss, J. A. (2006). Simulation of soft tissue failure using the material point method. Journal of Biomechanical Engineering, 128(6), 917–924.CrossRef Ionescu, I., Guilkey, J. E., Berzins, M., Kirby, R. M., & Weiss, J. A. (2006). Simulation of soft tissue failure using the material point method. Journal of Biomechanical Engineering, 128(6), 917–924.CrossRef
70.
go back to reference Gasser, T. C., & Holzapfel, G. A. (2006). Modeling dissection propagation in soft biological tissues. The European Journal of Mechanics—A/Solids, 25, 617–633.MathSciNetCrossRefMATH Gasser, T. C., & Holzapfel, G. A. (2006). Modeling dissection propagation in soft biological tissues. The European Journal of Mechanics—A/Solids, 25, 617–633.MathSciNetCrossRefMATH
71.
go back to reference Gasser, T. C., & Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering, 35(5), 711–723.CrossRef Gasser, T. C., & Holzapfel, G. A. (2007). Modeling plaque fissuring and dissection during balloon angioplasty intervention. Annals of Biomedical Engineering, 35(5), 711–723.CrossRef
72.
go back to reference Ferrara, A., & Pandolfi, A. (2008). Numerical modelling of fracture in human arteries. Computer Methods in Biomechanics and Biomedical Engineering, 11(5), 553–567.CrossRef Ferrara, A., & Pandolfi, A. (2008). Numerical modelling of fracture in human arteries. Computer Methods in Biomechanics and Biomedical Engineering, 11(5), 553–567.CrossRef
73.
go back to reference Gasser, T. C. (2011). Numerical simulation of the failure of ventricular tissue due to deep penetration: The impact of constitutive properties. Journal of Biomechanics, 44(1), 45–51.MathSciNetCrossRef Gasser, T. C. (2011). Numerical simulation of the failure of ventricular tissue due to deep penetration: The impact of constitutive properties. Journal of Biomechanics, 44(1), 45–51.MathSciNetCrossRef
74.
go back to reference Quinn, K. P., & Winkelstein, B. A. (2008). Altered collagen fiber kinematics define the onset of localized ligament damage during loading. Journal of Applied Physiology, 105(6), 1881–1888.CrossRef Quinn, K. P., & Winkelstein, B. A. (2008). Altered collagen fiber kinematics define the onset of localized ligament damage during loading. Journal of Applied Physiology, 105(6), 1881–1888.CrossRef
75.
go back to reference Knörzer, E., Folkhard, W., Geercken, W., Boschert, C., Koch, M. H. J., Hilbert, B., et al. (1986). New aspects of the etiology of tendon rupture. Archives of Orthopaedic and Traumatic Surgery, 105(2), 113–120.CrossRef Knörzer, E., Folkhard, W., Geercken, W., Boschert, C., Koch, M. H. J., Hilbert, B., et al. (1986). New aspects of the etiology of tendon rupture. Archives of Orthopaedic and Traumatic Surgery, 105(2), 113–120.CrossRef
76.
go back to reference Gentleman, E., Lay, A. N., Dickerson, D. A., Nauman, E. A., Livesay, G. A., & Dee, K. C. (2003). Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials, 24(21), 3805–3813.CrossRef Gentleman, E., Lay, A. N., Dickerson, D. A., Nauman, E. A., Livesay, G. A., & Dee, K. C. (2003). Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials, 24(21), 3805–3813.CrossRef
77.
go back to reference Silver, F. H., Freeman, J. W., & Seehra, G. P. (2003). Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics, 36(10), 1529–1553.CrossRef Silver, F. H., Freeman, J. W., & Seehra, G. P. (2003). Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics, 36(10), 1529–1553.CrossRef
78.
go back to reference Lubliner, J. (2008). Plasticity theory. Courier Corporation. Lubliner, J. (2008). Plasticity theory. Courier Corporation.
79.
go back to reference Simo, J. C., & Hughes, T. J. R. (2006). Computational inelasticity (vol. 7). Springer Science & Business Media. Simo, J. C., & Hughes, T. J. R. (2006). Computational inelasticity (vol. 7). Springer Science & Business Media.
80.
go back to reference Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.CrossRef Dugdale, D. S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 8(2), 100–104.CrossRef
81.
go back to reference Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, 55–129.MathSciNetCrossRef Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 7, 55–129.MathSciNetCrossRef
82.
go back to reference Hillerborg, A., Modéer, M., & Petersson, P.-E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–781. Hillerborg, A., Modéer, M., & Petersson, P.-E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773–781.
83.
go back to reference Oliver, J. (1996). Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: Fundamentals. International Journal for Numerical Methods in Engineering, 39(21), 3575–3600.CrossRefMATH Oliver, J. (1996). Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part 1: Fundamentals. International Journal for Numerical Methods in Engineering, 39(21), 3575–3600.CrossRefMATH
84.
go back to reference Armero, F., & Garikipati, K. (1996). An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, 33(20), 2863–2885.MathSciNetCrossRefMATH Armero, F., & Garikipati, K. (1996). An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids. International Journal of Solids and Structures, 33(20), 2863–2885.MathSciNetCrossRefMATH
85.
go back to reference Wells, G. N., & Sluys, L. J. (2001). Three-dimensional embedded discontinuity model for brittle fracture. International Journal of Solids and Structures, 38(5), 897–913.CrossRefMATH Wells, G. N., & Sluys, L. J. (2001). Three-dimensional embedded discontinuity model for brittle fracture. International Journal of Solids and Structures, 38(5), 897–913.CrossRefMATH
86.
go back to reference Gasser, T. C., & Holzapfel, G. A. (2003). Necking phenomena of a fiber-reinforced bar modeled by multisurface plasticity. In IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains (pp. 211–220). Springer. Gasser, T. C., & Holzapfel, G. A. (2003). Necking phenomena of a fiber-reinforced bar modeled by multisurface plasticity. In IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains (pp. 211–220). Springer.
87.
go back to reference Gasser, T. C., & Holzapfel, G. A. (2003). Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Computer Methods in Applied Mechanics and Engineering, 192(47), 5059–5098.MathSciNetCrossRefMATH Gasser, T. C., & Holzapfel, G. A. (2003). Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Computer Methods in Applied Mechanics and Engineering, 192(47), 5059–5098.MathSciNetCrossRefMATH
88.
go back to reference Ortiz, M., & Pandolfi, A. (1999). Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 44(9), 1267–1282.CrossRefMATH Ortiz, M., & Pandolfi, A. (1999). Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering, 44(9), 1267–1282.CrossRefMATH
89.
go back to reference Coleman, B. D., & Noll, W. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1), 167–178.MathSciNetCrossRefMATH Coleman, B. D., & Noll, W. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13(1), 167–178.MathSciNetCrossRefMATH
90.
go back to reference Ogden, R. W. (1997). Non-linear elastic deformations. Courier Corporation. Ogden, R. W. (1997). Non-linear elastic deformations. Courier Corporation.
91.
go back to reference Gasser, T. C., & Holzapfel, G. A. (2005). Modeling 3d crack propagation in unreinforced concrete using pufem. Computer Methods in Applied Mechanics and Engineering, 194(25), 2859–2896.CrossRefMATH Gasser, T. C., & Holzapfel, G. A. (2005). Modeling 3d crack propagation in unreinforced concrete using pufem. Computer Methods in Applied Mechanics and Engineering, 194(25), 2859–2896.CrossRefMATH
92.
go back to reference Spencer, A. J. M. (1984). Constitutive theory for strongly anisotropic solids. In Continuum theory of the mechanics of fibre-reinforced composites (pp. 1–32). Springer. Spencer, A. J. M. (1984). Constitutive theory for strongly anisotropic solids. In Continuum theory of the mechanics of fibre-reinforced composites (pp. 1–32). Springer.
93.
go back to reference Antman, S. S. (1995). Nonlinear problems of elasticity. Antman, S. S. (1995). Nonlinear problems of elasticity.
94.
go back to reference Ogden, R. W. (2003). Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In Biomechanics of soft tissue in cardiovascular systems (pp. 65–108). Springer. Ogden, R. W. (2003). Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. In Biomechanics of soft tissue in cardiovascular systems (pp. 65–108). Springer.
95.
go back to reference Auer, M., & Gasser, T. C. (2010). Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Transactions on Medical Imaging, 29(4), 1022–1028.CrossRef Auer, M., & Gasser, T. C. (2010). Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Transactions on Medical Imaging, 29(4), 1022–1028.CrossRef
96.
go back to reference Forsell, C., Swedenborg, J., Roy, J., & Gasser, T. C. (2013). The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental–numerical approach. Annals of Biomedical Engineering, 41(7), 1554–1566. Forsell, C., Swedenborg, J., Roy, J., & Gasser, T. C. (2013). The quasi-static failure properties of the abdominal aortic aneurysm wall estimated by a mixed experimental–numerical approach. Annals of Biomedical Engineering, 41(7), 1554–1566.
97.
go back to reference Forsell, C., Björck, H. M., Eriksson, P., Franco-Cereceda, A., & Gasser, T. C. (2014). Biomechanical properties of the thoracic aneurysmal wall: Differences between bicuspid aortic valve and tricuspid aortic valve patients. The Annals of Thoracic Surgery, 98(1), 65–71.CrossRef Forsell, C., Björck, H. M., Eriksson, P., Franco-Cereceda, A., & Gasser, T. C. (2014). Biomechanical properties of the thoracic aneurysmal wall: Differences between bicuspid aortic valve and tricuspid aortic valve patients. The Annals of Thoracic Surgery, 98(1), 65–71.CrossRef
98.
go back to reference Simo, J. C., & Taylor, R. L. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85(3), 273–310.MathSciNetCrossRefMATH Simo, J. C., & Taylor, R. L. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering, 85(3), 273–310.MathSciNetCrossRefMATH
99.
go back to reference Persson, B. N. J., Albohr, O., Heinrich, G., & Ueba, H. (2005). Crack propagation in rubber-like materials. Journal of Physics: Condensed Matter, 17(44), R1071. Persson, B. N. J., Albohr, O., Heinrich, G., & Ueba, H. (2005). Crack propagation in rubber-like materials. Journal of Physics: Condensed Matter, 17(44), R1071.
100.
go back to reference Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66(5), 754–771.CrossRef Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and Technology, 66(5), 754–771.CrossRef
101.
go back to reference Raghavan, M. L., & Vorp, D. A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics, 33(4), 475–482.CrossRef Raghavan, M. L., & Vorp, D. A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. Journal of Biomechanics, 33(4), 475–482.CrossRef
102.
go back to reference Gasser, T. C., Auer, M., Labruto, F., Swedenborg, J., & Roy, J. (2010). Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. European Journal of Vascular and Endovascular Surgery, 40(2), 176–185.CrossRef Gasser, T. C., Auer, M., Labruto, F., Swedenborg, J., & Roy, J. (2010). Biomechanical rupture risk assessment of abdominal aortic aneurysms: Model complexity versus predictability of finite element simulations. European Journal of Vascular and Endovascular Surgery, 40(2), 176–185.CrossRef
103.
go back to reference Holzapfel, G. A., Gasser, T. C., & Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids, 21(3), 441–463. Holzapfel, G. A., Gasser, T. C., & Stadler, M. (2002). A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. European Journal of Mechanics-A/Solids, 21(3), 441–463.
104.
go back to reference Gasser, T. C., Gudmundson, P., & Dohr, G. (2009). Failure mechanisms of ventricular tissue due to deep penetration. Journal of Biomechanics, 42(5), 626–633.CrossRef Gasser, T. C., Gudmundson, P., & Dohr, G. (2009). Failure mechanisms of ventricular tissue due to deep penetration. Journal of Biomechanics, 42(5), 626–633.CrossRef
105.
go back to reference Wriggers, P. (2006). Computational contact mechanics. Springer Science & Business Media. Wriggers, P. (2006). Computational contact mechanics. Springer Science & Business Media.
106.
go back to reference Lanir, Y., Lichtenstein, O., & Imanuel, O. (1996). Optimal design of biaxial tests for structural material characterization of flat tissues. Journal of Biomechanical Engineering, 118(1), 41–47.CrossRef Lanir, Y., Lichtenstein, O., & Imanuel, O. (1996). Optimal design of biaxial tests for structural material characterization of flat tissues. Journal of Biomechanical Engineering, 118(1), 41–47.CrossRef
Metadata
Title
Damage in Vascular Tissues and Its Modeling
Author
T. Christian Gasser
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-45071-1_4