Skip to main content
Top

2019 | OriginalPaper | Chapter

48. Damping Characteristics of Shape Memory Alloys on Their Inherent and Intrinsic Internal Friction

Authors : Shih-Hang Chang, Shyi-Kaan Wu

Published in: Handbook of Mechanics of Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, damping characteristics of the inherent and intrinsic internal friction (IFPT + IFI) peaks for Ti50Ni50, Ti50Ni50-xCux, Ti50Ni50-xFex, Ni2MnGa, Ni-Mn-Ti, and Cu-Al-Ni shape memory alloys (SMAs) are reviewed. Ti50Ni50 SMA exhibits obvious (IFPT + IFI) peaks with tan δ above 0.02 during martensitic transformations, but they only exist in a narrow and low temperature range. Ti50Ni50-xCux (x ≥ 10) SMAs show higher (IFPT + IFI) peaks than Ti50Ni50 SMA because B19 martensite in Ti50Ni50-xCux SMAs is originated by substituting Ni with Cu atoms while R-phase in Ti50Ni50 SMA is caused by the introduction of abundant defects/dislocations. Ti50Ni48Fe2 and Ti50Ni47Fe3 SMAs also exhibit higher (IFPT + IFI) peaks than Ti50Ni50 SMA because R-phase formation is due to the substitution of Ni by Fe atoms rather than induced by introduced dislocations. However, the martensitic transformation temperatures of Ti50Ni50-xFex SMAs are suppressed to lower temperatures simultaneously by the addition of Fe atoms. Ni-Mn-Ti and Ni-Mn-Ga magnetic SMAs both exhibit relatively high martensitic transformation temperatures. Unfortunately, the undesirable brittle nature of Ni-Mn-Ti and Ni-Mn-Ga SMAs critically limits their workability and high-damping applications. Cu-Al-Ni SMAs exhibit acceptable martensitic transformation temperatures and good workability; however, their (IFPT + IFI) peaks are relatively low. Among these various types of SMAs, Ti50Ni40Cu10 SMA is more suitable for high-damping applications because it possesses the advantages of high (IFPT + IFI) peaks, adequate workability, and an acceptable martensitic transformation temperature near room temperature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dowling NE. Mechanical behavior of materials. 2nd ed. Upper Saddle River: Prentice Hall; 1999. p. 757–60. Dowling NE. Mechanical behavior of materials. 2nd ed. Upper Saddle River: Prentice Hall; 1999. p. 757–60.
2.
go back to reference Lakes R. Viscoelastic materials. New York: Cambridge University Press; 2009. p. 1–13.CrossRef Lakes R. Viscoelastic materials. New York: Cambridge University Press; 2009. p. 1–13.CrossRef
3.
go back to reference Van Humbeeck J, Stoiber J, Delaey L, Gotthardt R. The high damping capacity of shape memory alloys. Z Met. 1995;86:176–83. Van Humbeeck J, Stoiber J, Delaey L, Gotthardt R. The high damping capacity of shape memory alloys. Z Met. 1995;86:176–83.
4.
go back to reference Delorme JF, Schmid R, Robin M, Gobin P. Frottement intérieur et microdéformation dans les transformations martensitiques. J Phys. 1971;32:C2-101–11. Delorme JF, Schmid R, Robin M, Gobin P. Frottement intérieur et microdéformation dans les transformations martensitiques. J Phys. 1971;32:C2-101–11.
5.
go back to reference Dejonghe W, De Batist R, Delaey L. Factors affecting the internal friction peak due to thermoelastic martensitic transformation. Scr Metall. 1976;10:1125–8.CrossRef Dejonghe W, De Batist R, Delaey L. Factors affecting the internal friction peak due to thermoelastic martensitic transformation. Scr Metall. 1976;10:1125–8.CrossRef
6.
go back to reference Zhu JS, Schaller R, Benoit W. Internal friction transitory effects associated with martensitic transformation in NiTi alloys. Phys Status Solidi A. 1988;108:613–8.CrossRef Zhu JS, Schaller R, Benoit W. Internal friction transitory effects associated with martensitic transformation in NiTi alloys. Phys Status Solidi A. 1988;108:613–8.CrossRef
7.
go back to reference Gremaud G, Bidaux JE, Benoit W. Etude à basse fréquence des pics de frottement intérieur associés à une transition de phase du 1er ordre. Helvetica Physica Acta. 1987;60:947–58. Gremaud G, Bidaux JE, Benoit W. Etude à basse fréquence des pics de frottement intérieur associés à une transition de phase du 1er ordre. Helvetica Physica Acta. 1987;60:947–58.
8.
go back to reference Bidaux JE, Schaller R, Benoit W. Study of the h.c.p.-f.c.c. phase transition in cobalt by acoustic measurements. Acta Metall. 1989;37:803–11. Bidaux JE, Schaller R, Benoit W. Study of the h.c.p.-f.c.c. phase transition in cobalt by acoustic measurements. Acta Metall. 1989;37:803–11.
9.
go back to reference Mercier O, Melton KN, De Préville Y. Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi. Acta Metall. 1979;27:1467–75.CrossRef Mercier O, Melton KN, De Préville Y. Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi. Acta Metall. 1979;27:1467–75.CrossRef
10.
go back to reference Gotthardt R, Mercier O. Relation between the damping spectrum and the dislocation motion in martensitic alloys. J Phys. 1981;42:C5-995–C5-1000. Gotthardt R, Mercier O. Relation between the damping spectrum and the dislocation motion in martensitic alloys. J Phys. 1981;42:C5-995–C5-1000.
11.
go back to reference Menard KP. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press; 1999.CrossRef Menard KP. Dynamic mechanical analysis: a practical introduction. Boca Raton: CRC Press; 1999.CrossRef
12.
go back to reference Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.CrossRef Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50:511–678.CrossRef
13.
go back to reference Wu SK, Lin HC, Chou TS. A study of electrical resistivity, internal friction and shear modulus on an aged Ti49Ni51 alloy. Acta Metall Mater. 1990;38:95–102.CrossRef Wu SK, Lin HC, Chou TS. A study of electrical resistivity, internal friction and shear modulus on an aged Ti49Ni51 alloy. Acta Metall Mater. 1990;38:95–102.CrossRef
14.
go back to reference Lin HC, Wu SK, Yeh MT. Damping characteristics of TiNi shape memory alloys. Metall Mater Trans A. 1993;24:2189–94. Lin HC, Wu SK, Yeh MT. Damping characteristics of TiNi shape memory alloys. Metall Mater Trans A. 1993;24:2189–94.
15.
go back to reference Liu Y, Van Humbeeck J, Stalmans R, Delaey L. Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd. 1997;247:115–21.CrossRef Liu Y, Van Humbeeck J, Stalmans R, Delaey L. Some aspects of the properties of NiTi shape memory alloy. J Alloys Compd. 1997;247:115–21.CrossRef
16.
go back to reference Coluzzi B, Biscarini A, Campanella R, Trotta L, Mazzolai G, Tuissi A, Mazzolai FM. Mechanical spectroscopy and twin boundary properties in a Ni50.8Ti49.2 alloy. Acta Mater. 1999;47:1965–76.CrossRef Coluzzi B, Biscarini A, Campanella R, Trotta L, Mazzolai G, Tuissi A, Mazzolai FM. Mechanical spectroscopy and twin boundary properties in a Ni50.8Ti49.2 alloy. Acta Mater. 1999;47:1965–76.CrossRef
17.
go back to reference Chang SH, Wu SK. Inherent internal friction of B2→R and R→B19′ martensitic transformations in equiatomic TiNi shape memory alloy. Scr Mater. 2006;55:311–4.CrossRef Chang SH, Wu SK. Inherent internal friction of B2→R and R→B19′ martensitic transformations in equiatomic TiNi shape memory alloy. Scr Mater. 2006;55:311–4.CrossRef
18.
go back to reference Chang SH, Wu SK. Internal friction of B2→B19′ martensitic transformation of Ti50Ni50 shape memory alloy under isothermal conditions. Mater Sci Eng A. 2007;454-455:379–83.CrossRef Chang SH, Wu SK. Internal friction of B2→B19′ martensitic transformation of Ti50Ni50 shape memory alloy under isothermal conditions. Mater Sci Eng A. 2007;454-455:379–83.CrossRef
19.
go back to reference Chang SH, Wu SK. Internal friction of R-phase and B19′ martensite in equiatomic TiNi shape memory alloy under isothermal conditions. J Alloys Compd. 2007;437:120–6.CrossRef Chang SH, Wu SK. Internal friction of R-phase and B19′ martensite in equiatomic TiNi shape memory alloy under isothermal conditions. J Alloys Compd. 2007;437:120–6.CrossRef
20.
go back to reference Chang SH, Wu SK. Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analyzer. Mater Charact. 2008;59:987–90. Chang SH, Wu SK. Effect of cooling rate on transformation temperature measurements of Ti50Ni50 alloy by differential scanning calorimetry and dynamic mechanical analyzer. Mater Charact. 2008;59:987–90.
21.
go back to reference Chang SH, Wu SK. Isothermal effect on internal friction of Ti50Ni50 alloy measured by step cooling method in dynamic mechanical analyzer. J Alloys Compd. 2008;459:155–9.CrossRef Chang SH, Wu SK. Isothermal effect on internal friction of Ti50Ni50 alloy measured by step cooling method in dynamic mechanical analyzer. J Alloys Compd. 2008;459:155–9.CrossRef
22.
go back to reference Nam TH, Saburi T, Shimizu K. Cu-content dependence of shape memory characteristics in Ti-Ni-cu alloys. Mater Trans. 1990;31:959–67.CrossRef Nam TH, Saburi T, Shimizu K. Cu-content dependence of shape memory characteristics in Ti-Ni-cu alloys. Mater Trans. 1990;31:959–67.CrossRef
23.
go back to reference Nam TH, Saburi T, Nakata Y, Shimizu K. Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater Trans. 1990;31:1050–6. Nam TH, Saburi T, Nakata Y, Shimizu K. Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater Trans. 1990;31:1050–6.
24.
go back to reference Miyamato H, Taniwaki T, Ohba T, Otsuka K, Nishigori S, Kato K. Two-stage B2-B19-B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation. Scr Mater. 2005;53:171–5.CrossRef Miyamato H, Taniwaki T, Ohba T, Otsuka K, Nishigori S, Kato K. Two-stage B2-B19-B19′ martensitic transformation in a Ti50Ni30Cu20 alloy observed by synchrotron radiation. Scr Mater. 2005;53:171–5.CrossRef
25.
go back to reference Nespoli A, Passaretti F, Villa E. Phase transition and mechanical damping properties: a DMTA study of NiTiCu shape memory alloys. Intermetallics. 2013;32:394–400.CrossRef Nespoli A, Passaretti F, Villa E. Phase transition and mechanical damping properties: a DMTA study of NiTiCu shape memory alloys. Intermetallics. 2013;32:394–400.CrossRef
26.
go back to reference Ramachandran B, Tang RC, Chang PC, Kuo YK, Chien C, Wu SK. Cu-substitution effect on thermoelectric properties of the TiNi-based shape memory alloys. J Appl Phys. 2013;113:203702.CrossRef Ramachandran B, Tang RC, Chang PC, Kuo YK, Chien C, Wu SK. Cu-substitution effect on thermoelectric properties of the TiNi-based shape memory alloys. J Appl Phys. 2013;113:203702.CrossRef
27.
go back to reference Yoshida I, Monma D, Iino K, Otsuka K, Asai M, Ysuzuki H. Damping properties of Ti50Ni50−xCux alloys utilizing martensitic transformation. J Alloys Compd. 2003;355:79–84.CrossRef Yoshida I, Monma D, Iino K, Otsuka K, Asai M, Ysuzuki H. Damping properties of Ti50Ni50−xCux alloys utilizing martensitic transformation. J Alloys Compd. 2003;355:79–84.CrossRef
28.
go back to reference Mazzolai FM, Biscarini A, Coluzzi B, Mazzolai G, Rotini A, Tuissi A. Internal friction spectra of the Ni40Ti50Cu10 shape memory alloy charged with hydrogen. Acta Mater. 2003;51:573–83.CrossRef Mazzolai FM, Biscarini A, Coluzzi B, Mazzolai G, Rotini A, Tuissi A. Internal friction spectra of the Ni40Ti50Cu10 shape memory alloy charged with hydrogen. Acta Mater. 2003;51:573–83.CrossRef
29.
go back to reference Fan G, Zhou Y, Otsuka K, Ren X, Nakamura K, Ohba T, Suzuki T, Yoshida I, Yin F. Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50−xCux shape memory alloys. Acta Mater. 2006;54:5221–9.CrossRef Fan G, Zhou Y, Otsuka K, Ren X, Nakamura K, Ohba T, Suzuki T, Yoshida I, Yin F. Effects of frequency, composition, hydrogen and twin boundary density on the internal friction of Ti50Ni50−xCux shape memory alloys. Acta Mater. 2006;54:5221–9.CrossRef
30.
go back to reference Chang SH, Hsiao SH. Inherent internal friction of Ti50Ni50-xCux shape memory alloys measured under isothermal conditions. J Alloys Compd. 2014;586:69–73.CrossRef Chang SH, Hsiao SH. Inherent internal friction of Ti50Ni50-xCux shape memory alloys measured under isothermal conditions. J Alloys Compd. 2014;586:69–73.CrossRef
31.
go back to reference Watanabe Y, Saburi T, Nakagawa Y, Nenno S. Self-accommodation structure in the Ti-Ni-cu orthorhombic martensite. J Jpn Inst Metals. 1990;54:861–9.CrossRef Watanabe Y, Saburi T, Nakagawa Y, Nenno S. Self-accommodation structure in the Ti-Ni-cu orthorhombic martensite. J Jpn Inst Metals. 1990;54:861–9.CrossRef
32.
go back to reference Onda T, Bando Y, Ohba T, Otsuka K. Electron microscopy study of twins in martensite in a Ti-50.0 at % Ni alloy. Mater Trans. 1992;33:354–9.CrossRef Onda T, Bando Y, Ohba T, Otsuka K. Electron microscopy study of twins in martensite in a Ti-50.0 at % Ni alloy. Mater Trans. 1992;33:354–9.CrossRef
33.
go back to reference Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu YN. Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng A. 1999;273-275:658–63.CrossRef Miyazaki S, Mizukoshi K, Ueki T, Sakuma T, Liu YN. Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater Sci Eng A. 1999;273-275:658–63.CrossRef
34.
go back to reference Hwang CM, Wayman CM. Phase transformations in TiNiFe, TiNiAl and TiNi alloys. Scr Metall. 1983;17:1345–50.CrossRef Hwang CM, Wayman CM. Phase transformations in TiNiFe, TiNiAl and TiNi alloys. Scr Metall. 1983;17:1345–50.CrossRef
35.
go back to reference Goo E, Sinclair R. The B2 to R transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 alloys. Acta Metall. 1985;33:1717–23.CrossRef Goo E, Sinclair R. The B2 to R transformation in Ti50Ni47Fe3 and Ti49.5Ni50.5 alloys. Acta Metall. 1985;33:1717–23.CrossRef
36.
go back to reference Lin HC, Wu SK, Chang YC. Damping characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 ternary shape memory alloys. Metall Mater Trans A. 1995;26:851–8. Lin HC, Wu SK, Chang YC. Damping characteristics of Ti50Ni49.5Fe0.5 and Ti50Ni40Cu10 ternary shape memory alloys. Metall Mater Trans A. 1995;26:851–8.
37.
go back to reference Chang SH, Chien C, Wu SK. Damping characteristics of the inherent and intrinsic internal friction of Ti50Ni50-xFex (x = 2, 3, and 4) shape memory alloys. Mater Trans. 2016;57:351–6. Chang SH, Chien C, Wu SK. Damping characteristics of the inherent and intrinsic internal friction of Ti50Ni50-xFex (x = 2, 3, and 4) shape memory alloys. Mater Trans. 2016;57:351–6.
38.
go back to reference Webster PJ, Ziebeck KRA, Town SL, Peak MS. Magnetic order and phase transformation in Ni2MnGa. Philos Mag B. 1984;49:295–310.CrossRef Webster PJ, Ziebeck KRA, Town SL, Peak MS. Magnetic order and phase transformation in Ni2MnGa. Philos Mag B. 1984;49:295–310.CrossRef
39.
go back to reference Kokorin VV, Chernenko VA. Martensitic transformation in a ferromagnetic Heusler alloy. Phys Met Metallogr. 1989;68:111–5. Kokorin VV, Chernenko VA. Martensitic transformation in a ferromagnetic Heusler alloy. Phys Met Metallogr. 1989;68:111–5.
40.
go back to reference Chernenko VA, Cesari E, Kokorin VV, Vitenko IN. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr Metall Mater. 1995;33:1239–44.CrossRef Chernenko VA, Cesari E, Kokorin VV, Vitenko IN. The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system. Scr Metall Mater. 1995;33:1239–44.CrossRef
41.
go back to reference Wu SK, Yang ST. Effect of composition on transformation temperatures of Ni-Mn-Ga shape memory alloys. Mater Lett. 2003;57:4291–6. Wu SK, Yang ST. Effect of composition on transformation temperatures of Ni-Mn-Ga shape memory alloys. Mater Lett. 2003;57:4291–6.
42.
go back to reference Chang SH, Wu SK. Low-frequency damping properties of near-stoichiometric Ni2MnGa shape memory alloys under isothermal conditions. Scr Mater. 2008;59:1039–42.CrossRef Chang SH, Wu SK. Low-frequency damping properties of near-stoichiometric Ni2MnGa shape memory alloys under isothermal conditions. Scr Mater. 2008;59:1039–42.CrossRef
43.
go back to reference Böhm A, Roth S, Naumann G, Drossel WG, Neugebauer R. Analysis of structural and functional properties of Ni50Mn30Ga20 after plastic deformation. Mater Sci Eng A. 2008;481-482:266–70.CrossRef Böhm A, Roth S, Naumann G, Drossel WG, Neugebauer R. Analysis of structural and functional properties of Ni50Mn30Ga20 after plastic deformation. Mater Sci Eng A. 2008;481-482:266–70.CrossRef
44.
go back to reference Chernenko VA, Pons J, Seguí C, Cesari E. Premartensitic phenomena and other phase transformations in Ni–Mn–Ga alloys studied by dynamical mechanical analysis and electron diffraction. Acta Mater. 2002;50:53–60.CrossRef Chernenko VA, Pons J, Seguí C, Cesari E. Premartensitic phenomena and other phase transformations in Ni–Mn–Ga alloys studied by dynamical mechanical analysis and electron diffraction. Acta Mater. 2002;50:53–60.CrossRef
45.
go back to reference Jee KK, Potapov PL, Song SY, Shin MC. Shape memory effect in NiAl and NiMn-based alloys. Scr Mater. 1997;36:207–12.CrossRef Jee KK, Potapov PL, Song SY, Shin MC. Shape memory effect in NiAl and NiMn-based alloys. Scr Mater. 1997;36:207–12.CrossRef
46.
go back to reference Chang SH. Low frequency damping properties of a NiMnTi shape memory alloy. Mater Lett. 2011;65:134–6.CrossRef Chang SH. Low frequency damping properties of a NiMnTi shape memory alloy. Mater Lett. 2011;65:134–6.CrossRef
47.
go back to reference Otsuka K, Shimizu K. Pseudoelasticity and shape memory effects in alloys. Int Metals Rev. 1986;31:93–114. Otsuka K, Shimizu K. Pseudoelasticity and shape memory effects in alloys. Int Metals Rev. 1986;31:93–114.
48.
go back to reference Chang SH. Internal friction of cu-13.5A-4Ni shape memory alloy measured by dynamic mechanical analysis under isothermal conditions. Mater Lett. 2010;64:93–5.CrossRef Chang SH. Internal friction of cu-13.5A-4Ni shape memory alloy measured by dynamic mechanical analysis under isothermal conditions. Mater Lett. 2010;64:93–5.CrossRef
49.
go back to reference Chang SH. Influence of chemical composition on the damping characteristics of cu-al-Ni shape memory alloys. Mater Chem Phys. 2011;125:358–63.CrossRef Chang SH. Influence of chemical composition on the damping characteristics of cu-al-Ni shape memory alloys. Mater Chem Phys. 2011;125:358–63.CrossRef
50.
go back to reference Otsuka K, Shimizu K. Morphology and crystallography of thermoelastic cu-al-Ni martensite analyzed by the phenomenological theory. Mater Trans. 1974;15:103–8. Otsuka K, Shimizu K. Morphology and crystallography of thermoelastic cu-al-Ni martensite analyzed by the phenomenological theory. Mater Trans. 1974;15:103–8.
Metadata
Title
Damping Characteristics of Shape Memory Alloys on Their Inherent and Intrinsic Internal Friction
Authors
Shih-Hang Chang
Shyi-Kaan Wu
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6884-3_31

Premium Partners