Skip to main content
Top

2023 | OriginalPaper | Chapter

2. Data Analytics Applications in Digital Energy System Operation

Authors : Ali Paeizi, Mohammad Taghi Ameli, Sasan Azad

Published in: Energy Systems Transition

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In today’s energy industry, the use of data analytics in modern digital energy system operation is an important research and innovation area. Data analysis has a key role in any modern industries and is a significant part of the optimal modern operation and planning in different industries, especially in smart power systems. This is a motivation for efficient data monitoring and processing methods to operate the digital energy system. This chapter aims to present algorithms and tools in the area of data analysis as well as the application of these tools to solve problems and challenges in modern electric power systems. In addition, basic concepts in data analysis methods, technical approaches, and research opportunities for analyzing energy data and its application in digital electric energy systems operation are discussed. Moreover, data security challenges, data management, and visualization with analysis of system input data are introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Raoufat ME, Tomsovic K, Djouadi SM (2016) Virtual actuators for wide-area damping control of power systems. IEEE Trans Power Syst 31(6):4703–4711CrossRef Raoufat ME, Tomsovic K, Djouadi SM (2016) Virtual actuators for wide-area damping control of power systems. IEEE Trans Power Syst 31(6):4703–4711CrossRef
2.
go back to reference Usman MU, Omar Faruque M (2019) Applications of synchrophasor technologies in power systems. J Modern Power Syst Clean Energy 7(2):211–226CrossRef Usman MU, Omar Faruque M (2019) Applications of synchrophasor technologies in power systems. J Modern Power Syst Clean Energy 7(2):211–226CrossRef
3.
go back to reference Asad Z, Rehman Chaudhry MA (2017) A two-way street: Green big data processing for a greener smart grid. IEEE Syst J 11(2):784–795CrossRef Asad Z, Rehman Chaudhry MA (2017) A two-way street: Green big data processing for a greener smart grid. IEEE Syst J 11(2):784–795CrossRef
4.
go back to reference Marjani M et al (2017) Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5:5247–5261CrossRef Marjani M et al (2017) Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5:5247–5261CrossRef
5.
go back to reference Huang C et al (2021) Smart meter pinging and reading through AMI two-way communication networks to monitor grid edge devices and DERs. IEEE Trans Smart Grid PP(99):1 Huang C et al (2021) Smart meter pinging and reading through AMI two-way communication networks to monitor grid edge devices and DERs. IEEE Trans Smart Grid PP(99):1
6.
go back to reference Portelinha JFM, Oliveira DQ (2018) The role of Big Data in smart grid communications. In: Big Data analytics in future power systems. CRC Press, pp 37–53CrossRef Portelinha JFM, Oliveira DQ (2018) The role of Big Data in smart grid communications. In: Big Data analytics in future power systems. CRC Press, pp 37–53CrossRef
7.
go back to reference Katz JS (2018) The role of Big Data and analytics in utility innovation. In: Big Data application in power systems. Elsevier, pp 43–56CrossRef Katz JS (2018) The role of Big Data and analytics in utility innovation. In: Big Data application in power systems. Elsevier, pp 43–56CrossRef
8.
go back to reference Stimmel CL (2018) Emerging security and data privacy challenges for utilities: case studies and solutions. In: Big Data application in power systems. Elsevier, pp 29–42CrossRef Stimmel CL (2018) Emerging security and data privacy challenges for utilities: case studies and solutions. In: Big Data application in power systems. Elsevier, pp 29–42CrossRef
9.
go back to reference Bessa RJ (2018) Future trends for big data application in power systems. In: Big data application in power systems. Elsevier, pp 223–242CrossRef Bessa RJ (2018) Future trends for big data application in power systems. In: Big data application in power systems. Elsevier, pp 223–242CrossRef
10.
go back to reference Hu J, Vasilakos AV (2016) Energy big data analytics and security: challenges and opportunities. IEEE Trans Smart Grid 7(5):2423–2436CrossRef Hu J, Vasilakos AV (2016) Energy big data analytics and security: challenges and opportunities. IEEE Trans Smart Grid 7(5):2423–2436CrossRef
11.
go back to reference Sharifzadeh A, Ameli MT, Azad S (2021) Power system challenges and issues. In: Nazari-Heris M, Asadi S, Mohammadi-Ivatloo B, Abdar M, Jebelli H, Sadat-Mohammadi M (eds) Application of machine learning and deep learning methods to power system problems. Power systems. Springer, Cham. https://doi.org/10.1007/978-3-030-77696-1_1CrossRef Sharifzadeh A, Ameli MT, Azad S (2021) Power system challenges and issues. In: Nazari-Heris M, Asadi S, Mohammadi-Ivatloo B, Abdar M, Jebelli H, Sadat-Mohammadi M (eds) Application of machine learning and deep learning methods to power system problems. Power systems. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-77696-1_​1CrossRef
12.
go back to reference Panda DK, Das S (2021) Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. J Clean Prod 301:126877CrossRef Panda DK, Das S (2021) Smart grid architecture model for control, optimization and data analytics of future power networks with more renewable energy. J Clean Prod 301:126877CrossRef
13.
go back to reference Farhoumandi M, Zhou Q, Shahidehpour M (2021) A review of machine learning applications in IoT-integrated modern power systems. Electr J 34(1):106879CrossRef Farhoumandi M, Zhou Q, Shahidehpour M (2021) A review of machine learning applications in IoT-integrated modern power systems. Electr J 34(1):106879CrossRef
14.
go back to reference Kezunovic M et al (2020) Big data analytics for future electricity grids. Electr Power Syst Res 189:106788CrossRef Kezunovic M et al (2020) Big data analytics for future electricity grids. Electr Power Syst Res 189:106788CrossRef
15.
go back to reference Völker B et al (2021) Watt’s up at home? Smart meter data analytics from a consumer-centric perspective. Energies 14(3):719CrossRef Völker B et al (2021) Watt’s up at home? Smart meter data analytics from a consumer-centric perspective. Energies 14(3):719CrossRef
16.
go back to reference Miraftabzadeh SM et al (2021) Advances in the application of machine learning techniques for power system analytics: a survey. Energies 14(16):4776CrossRef Miraftabzadeh SM et al (2021) Advances in the application of machine learning techniques for power system analytics: a survey. Energies 14(16):4776CrossRef
17.
go back to reference Li Y, Zhang M, Chen C (2022) A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems. Appl Energy 308:118347CrossRef Li Y, Zhang M, Chen C (2022) A deep-learning intelligent system incorporating data augmentation for short-term voltage stability assessment of power systems. Appl Energy 308:118347CrossRef
18.
go back to reference Wang Y et al (2018) Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans Smart Grid 10(3):3125–3148MathSciNetCrossRef Wang Y et al (2018) Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans Smart Grid 10(3):3125–3148MathSciNetCrossRef
19.
go back to reference Musbah H et al (2022) Energy management using multi-criteria decision making and machine learning classification algorithms for intelligent system. Electr Power Syst Res 203:107645CrossRef Musbah H et al (2022) Energy management using multi-criteria decision making and machine learning classification algorithms for intelligent system. Electr Power Syst Res 203:107645CrossRef
20.
go back to reference Khalkho AM, Mohanta DK (2022) RBFNN assisted transient instability-based risk assessment of cyber-physical power system. Int J Electr Power Energy Syst 137:107787CrossRef Khalkho AM, Mohanta DK (2022) RBFNN assisted transient instability-based risk assessment of cyber-physical power system. Int J Electr Power Energy Syst 137:107787CrossRef
21.
go back to reference Kumari A, Tanwar S (2020) Secure data analytics for smart grid systems in a sustainable smart city: challenges, solutions, and future directions. Sustain Comput Inform Syst 28:100427 Kumari A, Tanwar S (2020) Secure data analytics for smart grid systems in a sustainable smart city: challenges, solutions, and future directions. Sustain Comput Inform Syst 28:100427
22.
go back to reference Shi L, Dai Q, Ni Y (2018) Cyber–physical interactions in power systems: a review of models, methods, and applications. Electr Power Syst Res 163:396–412CrossRef Shi L, Dai Q, Ni Y (2018) Cyber–physical interactions in power systems: a review of models, methods, and applications. Electr Power Syst Res 163:396–412CrossRef
23.
go back to reference Tu C et al (2017) Big data issues in smart grid–A review. Renew Sust Energ Rev 79:1099–1107CrossRef Tu C et al (2017) Big data issues in smart grid–A review. Renew Sust Energ Rev 79:1099–1107CrossRef
24.
go back to reference Moharm K (2019) State of the art in big data applications in microgrid: a review. Adv Eng Inform 42:100945CrossRef Moharm K (2019) State of the art in big data applications in microgrid: a review. Adv Eng Inform 42:100945CrossRef
25.
go back to reference Zhou D et al (2016) Distributed data analytics platform for wide-area synchrophasor measurement systems. IEEE Trans Smart Grid 7(5):2397–2405CrossRef Zhou D et al (2016) Distributed data analytics platform for wide-area synchrophasor measurement systems. IEEE Trans Smart Grid 7(5):2397–2405CrossRef
26.
go back to reference Chen L et al (2020) Robustness of cyber-physical power systems in cascading failure: survival of interdependent clusters. Int J Electr Power Energy Syst 114:105374CrossRef Chen L et al (2020) Robustness of cyber-physical power systems in cascading failure: survival of interdependent clusters. Int J Electr Power Energy Syst 114:105374CrossRef
27.
go back to reference Ghorbanian M, Dolatabadi SH, Siano P (2019a) Big data issues in smart grids: a survey. IEEE Syst J 13(4):4158–4168CrossRef Ghorbanian M, Dolatabadi SH, Siano P (2019a) Big data issues in smart grids: a survey. IEEE Syst J 13(4):4158–4168CrossRef
28.
go back to reference Moghaddass R, Wang J (2018) A hierarchical framework for smart grid anomaly detection using large-scale smart meter data. IEEE Trans Smart Grid 9(6):5820–5830CrossRef Moghaddass R, Wang J (2018) A hierarchical framework for smart grid anomaly detection using large-scale smart meter data. IEEE Trans Smart Grid 9(6):5820–5830CrossRef
29.
go back to reference Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRef Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687CrossRef
30.
go back to reference Wang K, Xu C, Zhang Y, Guo S, Zomaya A (2019) Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans Big Data 5(1):34–45CrossRef Wang K, Xu C, Zhang Y, Guo S, Zomaya A (2019) Robust big data analytics for electricity price forecasting in the smart grid. IEEE Trans Big Data 5(1):34–45CrossRef
31.
go back to reference Wu J, Ota K, Dong M, Li J, Wang H (2017) Big data analysis based security situational awareness for smart grid. IEEE Trans Big Data 4(3):408–417CrossRef Wu J, Ota K, Dong M, Li J, Wang H (2017) Big data analysis based security situational awareness for smart grid. IEEE Trans Big Data 4(3):408–417CrossRef
32.
go back to reference Jiang H, Wang K, Wang Y, Gao M, Zhang Y (2016) Energy big data: A survey. IEEE Access 4:3844–3861CrossRef Jiang H, Wang K, Wang Y, Gao M, Zhang Y (2016) Energy big data: A survey. IEEE Access 4:3844–3861CrossRef
33.
go back to reference Ali MS, Vecchio M, Pincheira M, Dolui K, Antonelli F, Rehmani MH (2019) Applications of blockchains in the Internet of Things: a comprehensive survey. IEEE Commun Surv Tuts 21(2):1676–1717CrossRef Ali MS, Vecchio M, Pincheira M, Dolui K, Antonelli F, Rehmani MH (2019) Applications of blockchains in the Internet of Things: a comprehensive survey. IEEE Commun Surv Tuts 21(2):1676–1717CrossRef
34.
go back to reference Daki H, El Hannani A, Aqqal A, Haidine A, Dahbi A (2017) Big data management in smart grid: concepts, requirements, and implementation. J Big Data 4(1):1–19CrossRef Daki H, El Hannani A, Aqqal A, Haidine A, Dahbi A (2017) Big data management in smart grid: concepts, requirements, and implementation. J Big Data 4(1):1–19CrossRef
35.
go back to reference Wang K et al (2017) Wireless big data computing in smart grid. IEEE Wireless Commun 24(2):58–64CrossRef Wang K et al (2017) Wireless big data computing in smart grid. IEEE Wireless Commun 24(2):58–64CrossRef
36.
go back to reference He Y, Mendis GJ, Wei J (2017) Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans Smart Grid 8(5):2505–2516CrossRef He Y, Mendis GJ, Wei J (2017) Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans Smart Grid 8(5):2505–2516CrossRef
37.
go back to reference Aman S, Simmhan Y, Prasanna VK (2015) Holistic measures for evaluating prediction models in smart grids. IEEE Trans Knowl Data Eng 27(2):475–488CrossRef Aman S, Simmhan Y, Prasanna VK (2015) Holistic measures for evaluating prediction models in smart grids. IEEE Trans Knowl Data Eng 27(2):475–488CrossRef
38.
go back to reference Chin WL, Li W, Chen HH (2017) Energy big data security threats in IoT-based smart grid communications. IEEE Commun Mag 55(10):70–75CrossRef Chin WL, Li W, Chen HH (2017) Energy big data security threats in IoT-based smart grid communications. IEEE Commun Mag 55(10):70–75CrossRef
39.
go back to reference Zainab A et al (2021) Big data management in smart grids: technologies and challenges. IEEE Access 9:73046–73059CrossRef Zainab A et al (2021) Big data management in smart grids: technologies and challenges. IEEE Access 9:73046–73059CrossRef
40.
go back to reference Ghorbanian M, Dolatabadi SH, Masjedi M, Siano P (2019b) Communication in smart grids: a comprehensive review on the existing and future communication and information infrastructures. IEEE Syst J PP(99):1–14 Ghorbanian M, Dolatabadi SH, Masjedi M, Siano P (2019b) Communication in smart grids: a comprehensive review on the existing and future communication and information infrastructures. IEEE Syst J PP(99):1–14
41.
go back to reference Liao D, Sun G, Yang G, Chang V (2018) Energy-efficient virtual content distribution network provisioning in cloud-based data centers. Future Gener Comput Syst 83:347–357CrossRef Liao D, Sun G, Yang G, Chang V (2018) Energy-efficient virtual content distribution network provisioning in cloud-based data centers. Future Gener Comput Syst 83:347–357CrossRef
42.
go back to reference Akhavan-Hejazi H, Mohsenian-Rad H (2018) Power systems big data analytics: an assessment of paradigm shift barriers and prospects. Energy Rep 4:91–100CrossRef Akhavan-Hejazi H, Mohsenian-Rad H (2018) Power systems big data analytics: an assessment of paradigm shift barriers and prospects. Energy Rep 4:91–100CrossRef
43.
go back to reference Wang M, Chow JH (2021) 11 data quality and privacy enhancement. In: Advanced data analytics for power systems, p 261CrossRef Wang M, Chow JH (2021) 11 data quality and privacy enhancement. In: Advanced data analytics for power systems, p 261CrossRef
44.
go back to reference Mishra DP, Ray P (2018) Fault detection, location and classification of a transmission line. Neural Comput & Applic 30(5):1377–1424CrossRef Mishra DP, Ray P (2018) Fault detection, location and classification of a transmission line. Neural Comput & Applic 30(5):1377–1424CrossRef
45.
go back to reference Cheng L, Tao Y (2019) A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int J Energy Res 43(6):1928–1973CrossRef Cheng L, Tao Y (2019) A new generation of AI: a review and perspective on machine learning technologies applied to smart energy and electric power systems. Int J Energy Res 43(6):1928–1973CrossRef
46.
go back to reference Chen K et al (2018) Learning-based data analytics: moving towards transparent power grids. CSEE J Power Energy Syst 4(1):67–82CrossRef Chen K et al (2018) Learning-based data analytics: moving towards transparent power grids. CSEE J Power Energy Syst 4(1):67–82CrossRef
47.
go back to reference Munshi AA, Mohamed A-RI, Yasser. (2017) Big data framework for analytics in smart grids. Electr Power Syst Res 151:369–380CrossRef Munshi AA, Mohamed A-RI, Yasser. (2017) Big data framework for analytics in smart grids. Electr Power Syst Res 151:369–380CrossRef
48.
go back to reference Tanwar S, Parekh K, Evans R (2020) Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J Inform Secur Appl 50:102407 Tanwar S, Parekh K, Evans R (2020) Blockchain-based electronic healthcare record system for healthcare 4.0 applications. J Inform Secur Appl 50:102407
49.
go back to reference Singh AP et al (2019) Storage and analysis of Synchrophasor data for event detection in Indian Power System Using Hadoop Ecosystem. In: Data and communication networks. Springer, Singapore, pp 291–304CrossRef Singh AP et al (2019) Storage and analysis of Synchrophasor data for event detection in Indian Power System Using Hadoop Ecosystem. In: Data and communication networks. Springer, Singapore, pp 291–304CrossRef
50.
go back to reference Guo Y et al (2018) Complex power system status monitoring and evaluation using Big Data platform and machine learning algorithms: a review and a case study. Complexity 2018:1 Guo Y et al (2018) Complex power system status monitoring and evaluation using Big Data platform and machine learning algorithms: a review and a case study. Complexity 2018:1
51.
go back to reference Khan M et al (2014) Parallel detrended fluctuation analysis for fast event detection on massive PMU data. IEEE Trans Smart Grid 6(1):360–368CrossRef Khan M et al (2014) Parallel detrended fluctuation analysis for fast event detection on massive PMU data. IEEE Trans Smart Grid 6(1):360–368CrossRef
52.
go back to reference Chu L et al (2017) Massive streaming PMU data modelling and analytics in smart grid state evaluation based on multiple high-dimensional covariance test. IEEE Tran Big Data 4(1):55–64CrossRef Chu L et al (2017) Massive streaming PMU data modelling and analytics in smart grid state evaluation based on multiple high-dimensional covariance test. IEEE Tran Big Data 4(1):55–64CrossRef
53.
go back to reference Ruiguang M, Haiyan W, Quanming Z, Yuan L (2017) Technical research on the electric power big data platform of smart grid. In: MATEC web of conferences, vol 139. EDP Sciences, p 00217 Ruiguang M, Haiyan W, Quanming Z, Yuan L (2017) Technical research on the electric power big data platform of smart grid. In: MATEC web of conferences, vol 139. EDP Sciences, p 00217
54.
go back to reference Bhattarai BP et al (2019) Big data analytics in smart grids: state‐of‐the‐art, challenges, opportunities, and future directions. IET Smart Grid 2(2):141–154MathSciNetCrossRef Bhattarai BP et al (2019) Big data analytics in smart grids: state‐of‐the‐art, challenges, opportunities, and future directions. IET Smart Grid 2(2):141–154MathSciNetCrossRef
55.
go back to reference Liu Y, Lei W, Li J (2020) D-PMU based applications for emerging active distribution systems: a review. Electr Power Syst Res 179:106063CrossRef Liu Y, Lei W, Li J (2020) D-PMU based applications for emerging active distribution systems: a review. Electr Power Syst Res 179:106063CrossRef
56.
go back to reference Cao Z, Lin J, Wan C, Song Y, Taylor G, Li M (2017) Hadoop-based framework for big data analysis of synchronized harmonics in active distribution network. IET Gener Transm Distrib 11(16):3930–3937CrossRef Cao Z, Lin J, Wan C, Song Y, Taylor G, Li M (2017) Hadoop-based framework for big data analysis of synchronized harmonics in active distribution network. IET Gener Transm Distrib 11(16):3930–3937CrossRef
57.
go back to reference Mollaei N, Mousavi SH (2017) Application of a hadoop-based distributed system for offline processing of power quality disturbances. Int J Power Electron Drive Syst(IJPEDS) 8(2):695–704CrossRef Mollaei N, Mousavi SH (2017) Application of a hadoop-based distributed system for offline processing of power quality disturbances. Int J Power Electron Drive Syst(IJPEDS) 8(2):695–704CrossRef
58.
go back to reference Khodayar M, Kaynak O, Khodayar ME (2017) Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans Indus Inform 13(6):2770–2779CrossRef Khodayar M, Kaynak O, Khodayar ME (2017) Rough deep neural architecture for short-term wind speed forecasting. IEEE Trans Indus Inform 13(6):2770–2779CrossRef
59.
go back to reference Zhang Y, Huang T, Bompard EF (2018) Big data analytics in smart grids: a review. Energy Inform 1(1):8CrossRef Zhang Y, Huang T, Bompard EF (2018) Big data analytics in smart grids: a review. Energy Inform 1(1):8CrossRef
60.
go back to reference Madadi S et al (2018) Application of Big Data analysis to operation of smart power systems. In: Big Data in engineering applications. Springer, Singapore, pp 347–362CrossRef Madadi S et al (2018) Application of Big Data analysis to operation of smart power systems. In: Big Data in engineering applications. Springer, Singapore, pp 347–362CrossRef
61.
go back to reference Chang L, Wang X, Mao M (2017) Forecast of schedulable capacity for thermostatically controlled loads with big data analysis. 2017 IEEE 8th international symposium on power electronics for distributed generation systems (PEDG), IEEE, pp 1–6 Chang L, Wang X, Mao M (2017) Forecast of schedulable capacity for thermostatically controlled loads with big data analysis. 2017 IEEE 8th international symposium on power electronics for distributed generation systems (PEDG), IEEE, pp 1–6
62.
go back to reference Husák M et al (2018) Survey of attack projection, prediction, and forecasting in cyber security. IEEE Commun Surv Tutor 21(1):640–660CrossRef Husák M et al (2018) Survey of attack projection, prediction, and forecasting in cyber security. IEEE Commun Surv Tutor 21(1):640–660CrossRef
63.
go back to reference Fang X et al (2019) A deep learning framework for predicting cyber attacks rates. EURASIP J Inf Secur 2019(1):1–11MathSciNet Fang X et al (2019) A deep learning framework for predicting cyber attacks rates. EURASIP J Inf Secur 2019(1):1–11MathSciNet
64.
go back to reference Chadza T, Kyriakopoulos KG, Lambotharan S (2020) Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks. Futur Gener Comput Syst 108:636–649CrossRef Chadza T, Kyriakopoulos KG, Lambotharan S (2020) Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks. Futur Gener Comput Syst 108:636–649CrossRef
65.
go back to reference Zhang Y, Lin F, Wang K (2020) Robustness of short-term wind power forecasting against false data injection attacks. Energies 13(15):3780CrossRef Zhang Y, Lin F, Wang K (2020) Robustness of short-term wind power forecasting against false data injection attacks. Energies 13(15):3780CrossRef
66.
go back to reference Luo J, Hong T, Fang S-C (2018) Benchmarking robustness of load forecasting models under data integrity attacks. Int J Forecast 34(1):89–104CrossRef Luo J, Hong T, Fang S-C (2018) Benchmarking robustness of load forecasting models under data integrity attacks. Int J Forecast 34(1):89–104CrossRef
67.
go back to reference Doynikova E, Novikova E, Kotenko I (2020) Attacker behaviour forecasting using methods of intelligent data analysis: a comparative review and prospects. Information 11(3):168CrossRef Doynikova E, Novikova E, Kotenko I (2020) Attacker behaviour forecasting using methods of intelligent data analysis: a comparative review and prospects. Information 11(3):168CrossRef
Metadata
Title
Data Analytics Applications in Digital Energy System Operation
Authors
Ali Paeizi
Mohammad Taghi Ameli
Sasan Azad
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-22186-6_2