Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-06-2021 | Special Issue Paper

Data Augmentation using Geometric, Frequency, and Beta Modeling approaches for Improving Multi-lingual Online Handwriting Recognition

Journal:
International Journal on Document Analysis and Recognition (IJDAR)
Authors:
Yahia Hamdi, Houcine Boubaker, Adel M. Alimi
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The lack of large training data in the context of deep learning applications is a serious issue investigated by many studies that deal with the current challenge. In this paper, we introduce new data augmentation methods that generate more shape and dynamic variations to improve the performance of recognition systems using small datasets. Four data augmentation strategies are employed in our work. The first strategy employs the geometric methods that include: italicity angle, change of magnitude ratio, and baseline inclination angle. The second strategy applies a frequency treatment that attenuates or amplifies the trajectory high harmonics to generate handwriting modified styles. The third strategy employs the beta-elliptic model to extract a combined static and dynamic representation of the handwritten trajectory which undergoes limited random change around its parameters in order to generate more modified samples. The hybrid strategy consists of combining these strategies to maximize variations of the online handwriting trajectory (OHT). We evaluated our approach of data augmentation in the context of multi-lingual online handwriting recognition (OHR) tasks using end-to-end CNN architecture. Four databases; ADAB, ALTEC-OnDB, and Online_KHATT for Arabic script, and UNIPEN for Latin characters, are used to validate the proposed strategy. The obtained results show the effectiveness and the advantage of the adopted strategies compared with those registered before database extension or reported in the state-of-the-art systems.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Premium Partner

    Image Credits