Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-06-2022 | Regular Paper

Data-driven analytics of COVID-19 ‘infodemic’

Authors: Minyu Wan, Qi Su, Rong Xiang, Chu-Ren Huang

Published in: International Journal of Data Science and Analytics

Login to get access
share
SHARE

Abstract

The rampant of COVID-19 infodemic has almost been simultaneous with the outbreak of the pandemic. Many concerted efforts are made to mitigate its negative effect to information credibility and data legitimacy. Existing work mainly focuses on fact-checking algorithms or multi-class labeling models that are less aware of the intrinsic characteristics of the language. Nor is it discussed how such representations can account for the common psycho-socio-behavior of the information consumers. This work takes a data-driven analytical approach to (1) describe the prominent lexical and grammatical features of COVID-19 misinformation; (2) interpret the underlying (psycho-)linguistic triggers in terms of sentiment, power and activity based on the affective control theory; (3) study the feature indexing for anti-infodemic modeling. The results show distinct language generalization patterns of misinformation of favoring evaluative terms and multimedia devices in delivering a negative sentiment. Such appeals are effective to arouse people’s sympathy toward the vulnerable community and foment their spreading behavior.
Footnotes
1
More examples can be found in Mythbusters,Mayo Clinic,Avert, etc.
 
2
Donovan [3] defines ‘infodemic’ as ‘an overabundance of information some accurate and some not that makes it hard for people to find trustworthy sources and reliable guidance when they need it’.
 
3
Pathogenicty of misinformation is a metaphorical description of such claims in infecting people’ belief. It is based on the presupposed fact that misinformation is taken as a dangerous virus and poses great threats to the information credibility of the society. Thus, various organizations strive to combat and debunk misinformation like the COVID-19 virus.
 
4
We consider to further this part of work in future by adopting state-of-the-art neural networks and pre-trained models.
 
7
The score ranges from − 5.00 to 5.00 indicating various scales of sentiment polarity, affective power, and active degree in the continuous space.
 
9
The word vectors are pre-trained using en_core_web_md. We use the mean vectors of words in 300 dimension as the sentence representations.
 
13
LD = content*100%/(content + function)}.
 
15
As suggested by lexical density and the reverse relation of word and sentence length distribution.
 
16
As suggested by the dominance of verbal structures over nominal structures.
 
17
As suggested by the sentiment evaluation.
 
18
As suggested by the power evaluation.
 
19
As suggested by the activity evaluation.
 
20
A notion of persuasive fallacy arguments.
 
Literature
1.
go back to reference Sarla, G.S.: COVID 19: myths and facts, research & review: management of emergency and trauma. Nursing 2(2), 5–8 (2020) Sarla, G.S.: COVID 19: myths and facts, research & review: management of emergency and trauma. Nursing 2(2), 5–8 (2020)
2.
go back to reference Tasnim , S., Hossain, M., Mazumder, H.: Impact of rumors or misinformation on coronavirus disease (COVID-19) in social media (2020) Tasnim , S., Hossain, M., Mazumder, H.: Impact of rumors or misinformation on coronavirus disease (COVID-19) in social media (2020)
3.
go back to reference Donovan, J.: Here’s how social media can combat the coronavirus ‘infodemic’. MIT Technology Review 17 (2020) Donovan, J.: Here’s how social media can combat the coronavirus ‘infodemic’. MIT Technology Review 17 (2020)
4.
go back to reference Amgain, K., Neupane, S., Panthi, L., Thapaliya, P.: Myths versus truths regarding the novel coronavirus disease (COVID-2019) outbreak. J. Karnali Acad. Health Sci. 3(1), 1–6 (2020) CrossRef Amgain, K., Neupane, S., Panthi, L., Thapaliya, P.: Myths versus truths regarding the novel coronavirus disease (COVID-2019) outbreak. J. Karnali Acad. Health Sci. 3(1), 1–6 (2020) CrossRef
5.
go back to reference Rosenberg, H., Syed, S., Rezaie, S.: The Twitter pandemic: the critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic. Can. J. Emerg. Med. 22(4), 418–421 (2020) CrossRef Rosenberg, H., Syed, S., Rezaie, S.: The Twitter pandemic: the critical role of Twitter in the dissemination of medical information and misinformation during the COVID-19 pandemic. Can. J. Emerg. Med. 22(4), 418–421 (2020) CrossRef
6.
go back to reference Gupta, L., Gasparyan, A.Y., Misra, D.P., Agarwal, V., Zimba, O., Yessirkepov, M.: Information and misinformation on COVID-19: a cross-sectional survey study. J. Korean Med. Sci. 35(27), e256 (2020) CrossRef Gupta, L., Gasparyan, A.Y., Misra, D.P., Agarwal, V., Zimba, O., Yessirkepov, M.: Information and misinformation on COVID-19: a cross-sectional survey study. J. Korean Med. Sci. 35(27), e256 (2020) CrossRef
7.
go back to reference Krause, N.M., Freiling, I., Beets, B., Brossard, D.: Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. J. Risk Res. 23, 1052–1059 (2020) CrossRef Krause, N.M., Freiling, I., Beets, B., Brossard, D.: Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. J. Risk Res. 23, 1052–1059 (2020) CrossRef
8.
go back to reference Orso, D., Federici, N., Copetti, R., Vetrugno, L., Bove, T.: Infodemic and the spread of fake news in the COVID-19-era. Eur. J. Emerg. Med. 27, 327–328 (2020) CrossRef Orso, D., Federici, N., Copetti, R., Vetrugno, L., Bove, T.: Infodemic and the spread of fake news in the COVID-19-era. Eur. J. Emerg. Med. 27, 327–328 (2020) CrossRef
9.
go back to reference Pennycook, G., McPhetres, J., Zhang, Y., Lu, J.G., Rand, D.G.: Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31(7), 770–780 (2020) CrossRef Pennycook, G., McPhetres, J., Zhang, Y., Lu, J.G., Rand, D.G.: Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention. Psychol. Sci. 31(7), 770–780 (2020) CrossRef
10.
go back to reference Micallef, N., He, B., Kumar, S., Ahamad, M., Memon, N.: The role of the crowd in countering misinformation: a case study of the COVID-19 infodemic. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 748–757. IEEE (2020) Micallef, N., He, B., Kumar, S., Ahamad, M., Memon, N.: The role of the crowd in countering misinformation: a case study of the COVID-19 infodemic. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 748–757. IEEE (2020)
11.
go back to reference Rocha, E.G.M., de Oliveira, J.M., de Araújo, K.C.P., Abreu, M.E.S., da Silva, M.R.S., de Oliveira, T.R.S.: Fact-checking: an important tool to combat fake news on health in COVID-19 pandemic. Int. J. Commun. Netw. 4, 10 (2021) Rocha, E.G.M., de Oliveira, J.M., de Araújo, K.C.P., Abreu, M.E.S., da Silva, M.R.S., de Oliveira, T.R.S.: Fact-checking: an important tool to combat fake news on health in COVID-19 pandemic. Int. J. Commun. Netw. 4, 10 (2021)
12.
go back to reference Kim, H., Walker, D.: Leveraging volunteer fact checking to identify misinformation about COVID-19 in social media. Harvard Kennedy School Misinformation Review 1(3), 1–10 (2020) Kim, H., Walker, D.: Leveraging volunteer fact checking to identify misinformation about COVID-19 in social media. Harvard Kennedy School Misinformation Review 1(3), 1–10 (2020)
13.
go back to reference Islam, M.R., Liu, S., Wang, X., Xu, G.: Deep learning for misinformation detection on online social networks: a survey and new perspectives. Social Netw. Anal. Min. 10(1), 1–20 (2020) CrossRef Islam, M.R., Liu, S., Wang, X., Xu, G.: Deep learning for misinformation detection on online social networks: a survey and new perspectives. Social Netw. Anal. Min. 10(1), 1–20 (2020) CrossRef
14.
go back to reference Su, Q., Wan, M., Liu, X., Huang, C.R.: Motivations, methods and metrics of misinformation detection: an NLP perspective. Nat. Lang. Process. Res. 1, 1–13 (2020) CrossRef Su, Q., Wan, M., Liu, X., Huang, C.R.: Motivations, methods and metrics of misinformation detection: an NLP perspective. Nat. Lang. Process. Res. 1, 1–13 (2020) CrossRef
15.
go back to reference Cui, L., Seo, H., Tabar, M., Ma, F., Wang, S., Lee, D.: Deterrent: knowledge guided graph attention network for detecting healthcare misinformation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 492–502 (2020) Cui, L., Seo, H., Tabar, M., Ma, F., Wang, S., Lee, D.: Deterrent: knowledge guided graph attention network for detecting healthcare misinformation. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 492–502 (2020)
16.
go back to reference Wani, A., Joshi, I., Khandve, S., Wagh, V., Joshi, R.: Evaluating deep learning approaches for covid19 fake news detection. In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 153–163. Springer, Cham (2021) Wani, A., Joshi, I., Khandve, S., Wagh, V., Joshi, R.: Evaluating deep learning approaches for covid19 fake news detection. In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 153–163. Springer, Cham (2021)
17.
go back to reference Glazkova, A., Glazkov, M., Trifonov, T.: g2tmn at constraint@aaai2021: exploiting CT-BERT and ensembling learning for COVID-19 fake news detection. In: International Workshop on Combating Online Hostile Posts in Regional Languages During Emergency Situation, pp. 116–127. Springer, Cham (2021) Glazkova, A., Glazkov, M., Trifonov, T.: g2tmn at constraint@aaai2021: exploiting CT-BERT and ensembling learning for COVID-19 fake news detection. In: International Workshop on Combating Online Hostile Posts in Regional Languages During Emergency Situation, pp. 116–127. Springer, Cham (2021)
18.
go back to reference Zhang, T., Wang, D., Chen, H., Zeng, Z., Guo, W., Miao, C., Cui, L.: BDANN: BERT-based domain adaptation neural network for multi-modal fake news detection. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020) Zhang, T., Wang, D., Chen, H., Zeng, Z., Guo, W., Miao, C., Cui, L.: BDANN: BERT-based domain adaptation neural network for multi-modal fake news detection. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
19.
go back to reference Hande, A., Puranik, K., Priyadharshini, R., Thavareesan, S., Chakravarthi, B. R.: Evaluating pretrained transformer-based models for COVID-19 fake news detection. In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 766–772. IEEE (2021) Hande, A., Puranik, K., Priyadharshini, R., Thavareesan, S., Chakravarthi, B. R.: Evaluating pretrained transformer-based models for COVID-19 fake news detection. In: 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 766–772. IEEE (2021)
20.
go back to reference Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M.: Lying words: predicting deception from linguistic styles. Personal. Soc. Psychol. Bull. 29(5), 665–675 (2003) CrossRef Newman, M.L., Pennebaker, J.W., Berry, D.S., Richards, J.M.: Lying words: predicting deception from linguistic styles. Personal. Soc. Psychol. Bull. 29(5), 665–675 (2003) CrossRef
21.
go back to reference Patwa, P., Sharma, S., Pykl, S., Guptha, V., Kumari, G., Akhtar, M. S., Chakraborty, T.: Fighting an infodemic: Covid-19 fake news dataset. In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 21–29. Springer, Cham (2021) Patwa, P., Sharma, S., Pykl, S., Guptha, V., Kumari, G., Akhtar, M. S., Chakraborty, T.: Fighting an infodemic: Covid-19 fake news dataset. In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 21–29. Springer, Cham (2021)
22.
go back to reference Smith, G.D., Ng, F., Li, W.H.C.: COVID-19: emerging compassion, courage and resilience in the face of misinformation and adversity. J Clin Nurs 29(9–10), 1425 (2020) CrossRef Smith, G.D., Ng, F., Li, W.H.C.: COVID-19: emerging compassion, courage and resilience in the face of misinformation and adversity. J Clin Nurs 29(9–10), 1425 (2020) CrossRef
24.
go back to reference Thorne, J., Vlachos, A., Christodoulopoulos, C.: A. Mittal, FEVER: a large-scale dataset for fact extraction and verification. arXiv preprint arXiv:​1803.​05355 (2018) Thorne, J., Vlachos, A., Christodoulopoulos, C.: A. Mittal, FEVER: a large-scale dataset for fact extraction and verification. arXiv preprint arXiv:​1803.​05355 (2018)
25.
go back to reference Mitra, T., Gilbert, E.: Credbank: a large-scale social media corpus with associated credibility annotations. In: ICWSM, pp. 258–267 (2015) Mitra, T., Gilbert, E.: Credbank: a large-scale social media corpus with associated credibility annotations. In: ICWSM, pp. 258–267 (2015)
27.
go back to reference Zhou, X., Mulay, A., Ferrara, E., Zafarani, R.: ReCOVery: a multimodal repository for COVID-19 news credibility research. arXiv preprint arXiv:​2006.​0555 (2020) Zhou, X., Mulay, A., Ferrara, E., Zafarani, R.: ReCOVery: a multimodal repository for COVID-19 news credibility research. arXiv preprint arXiv:​2006.​0555 (2020)
28.
go back to reference Memon, S.A., Carley, K. M.: Characterizing COVID-19 misinformation communities using a novel twitter dataset. arXiv preprint arXiv:​2008.​00791 (2020) Memon, S.A., Carley, K. M.: Characterizing COVID-19 misinformation communities using a novel twitter dataset. arXiv preprint arXiv:​2008.​00791 (2020)
29.
go back to reference Dharawat, A., Lourentzou, I., Morales, A., Zhai, C.: Drink bleach or do what now? covid-HeRA: a dataset for risk-informed health decision making in the presence of COVID19 misinformation. arXiv preprint arXiv:​2010.​08743 (2020) Dharawat, A., Lourentzou, I., Morales, A., Zhai, C.: Drink bleach or do what now? covid-HeRA: a dataset for risk-informed health decision making in the presence of COVID19 misinformation. arXiv preprint arXiv:​2010.​08743 (2020)
30.
go back to reference Hossain, T.: COVIDLies: Detecting COVID-19 misinformation on social media. Doctoral dissertation, University of California, Irvine (2021) Hossain, T.: COVIDLies: Detecting COVID-19 misinformation on social media. Doctoral dissertation, University of California, Irvine (2021)
31.
go back to reference Chen, Q., Allot, A., Lu, Z.: LitCovid: an open database of COVID-19 literature. Nucleic Acids Res. 49(D1), D1534–D1540 (2021) CrossRef Chen, Q., Allot, A., Lu, Z.: LitCovid: an open database of COVID-19 literature. Nucleic Acids Res. 49(D1), D1534–D1540 (2021) CrossRef
32.
go back to reference Kim, J., Aum, J., Lee, S., Jang, Y., Park, E., Choi, D.: FibVID: comprehensive fake news diffusion dataset during the COVID-19 period. Telemat. Inform. 64, 101688 (2021) CrossRef Kim, J., Aum, J., Lee, S., Jang, Y., Park, E., Choi, D.: FibVID: comprehensive fake news diffusion dataset during the COVID-19 period. Telemat. Inform. 64, 101688 (2021) CrossRef
33.
go back to reference Haouari, F., Hasanain, M., Suwaileh, R., Elsayed, T.: ArCOV19-rumors: Arabic COVID-19 twitter dataset for misinformation detection. arXiv preprint arXiv:​2010.​08768 (2020) Haouari, F., Hasanain, M., Suwaileh, R., Elsayed, T.: ArCOV19-rumors: Arabic COVID-19 twitter dataset for misinformation detection. arXiv preprint arXiv:​2010.​08768 (2020)
34.
go back to reference Yang, C., Zhou, X., Zafarani, R.: CHECKED: Chinese COVID-19 fake news dataset. Social Netw. Anal. Min. 11(1), 1–8 (2021) CrossRef Yang, C., Zhou, X., Zafarani, R.: CHECKED: Chinese COVID-19 fake news dataset. Social Netw. Anal. Min. 11(1), 1–8 (2021) CrossRef
35.
36.
go back to reference Pulido, C.M., Villarejo-Carballido, B., Redondo-Sama, G., Gómez, A.: COVID-19 infodemic: more retweets for science-based information on coronavirus than for false information. Int. Sociol. 35(4), 377–392 (2020) CrossRef Pulido, C.M., Villarejo-Carballido, B., Redondo-Sama, G., Gómez, A.: COVID-19 infodemic: more retweets for science-based information on coronavirus than for false information. Int. Sociol. 35(4), 377–392 (2020) CrossRef
37.
go back to reference Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C.M., Brugnoli, E., Schmidt, A.L., Scala, A.: The COVID-19 social media infodemic. Sci. Rep. 10(1), 1–10 (2020) CrossRef Cinelli, M., Quattrociocchi, W., Galeazzi, A., Valensise, C.M., Brugnoli, E., Schmidt, A.L., Scala, A.: The COVID-19 social media infodemic. Sci. Rep. 10(1), 1–10 (2020) CrossRef
38.
go back to reference Hang, C.N., Yu, P.D., Ling, L., Tan, C.W.: MEGA: machine learning-enhanced graph analytics for COVID-19 infodemic control. medRxiv (2020) Hang, C.N., Yu, P.D., Ling, L., Tan, C.W.: MEGA: machine learning-enhanced graph analytics for COVID-19 infodemic control. medRxiv (2020)
39.
go back to reference Olaleye, T.O., Arogundade, O.T., Abayomi-Alli, A., Adesemowo, A.K.: An ensemble predictive analytics of COVID-19 infodemic tweets using bag of words. In: Data Science for COVID-19, pp. 365–380. Academic Press (2021) Olaleye, T.O., Arogundade, O.T., Abayomi-Alli, A., Adesemowo, A.K.: An ensemble predictive analytics of COVID-19 infodemic tweets using bag of words. In: Data Science for COVID-19, pp. 365–380. Academic Press (2021)
40.
go back to reference Chou, W.Y.S., Gaysynsky, A., Vanderpool, R.C.: The COVID-19 misinfodemic: moving beyond fact-checking. Health Educ. Behav. 48(1), 9–13 (2021) CrossRef Chou, W.Y.S., Gaysynsky, A., Vanderpool, R.C.: The COVID-19 misinfodemic: moving beyond fact-checking. Health Educ. Behav. 48(1), 9–13 (2021) CrossRef
41.
go back to reference Ceron, W., de-Lima-Santos, M.F., Quiles, M.G.: Fake news agenda in the era of COVID-19: identifying trends through fact-checking content. Online Soc. Netw. Media 21, 100116 (2021) CrossRef Ceron, W., de-Lima-Santos, M.F., Quiles, M.G.: Fake news agenda in the era of COVID-19: identifying trends through fact-checking content. Online Soc. Netw. Media 21, 100116 (2021) CrossRef
42.
go back to reference Chen, B., Chen, B., Gao, D., Chen, Q., Huo, C., Jun, X. M., Zhou, R.: Transformer-based language model fine-tuning methods for COVID-19 fake news detection. In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 83–92. Springer, Cham (2021) Chen, B., Chen, B., Gao, D., Chen, Q., Huo, C., Jun, X. M., Zhou, R.: Transformer-based language model fine-tuning methods for COVID-19 fake news detection. In: International Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation, pp. 83–92. Springer, Cham (2021)
43.
go back to reference Su, Q.: Information quality: linguistic cues and automatic judgments. In: The Routledge Handbook of Chinese Applied Linguistics, pp. 498–513. Routledge, London (2019) CrossRef Su, Q.: Information quality: linguistic cues and automatic judgments. In: The Routledge Handbook of Chinese Applied Linguistics, pp. 498–513. Routledge, London (2019) CrossRef
44.
go back to reference Rafi, M.S.: Dialogic content analysis of misinformation about COVID-19 on social media in Pakistan. Linguist. Lit. Rev. 6(2), 131–143 (2020) MathSciNetCrossRef Rafi, M.S.: Dialogic content analysis of misinformation about COVID-19 on social media in Pakistan. Linguist. Lit. Rev. 6(2), 131–143 (2020) MathSciNetCrossRef
45.
go back to reference Medford, R.J., Saleh, S.N., Sumarsono, A., Perl, T.M., Lehmann, C.U.: An“Infodemic”: leveraging high-volume Twitter data to understand public sentiment for the COVID-19 outbreak. medRxiv (2020) Medford, R.J., Saleh, S.N., Sumarsono, A., Perl, T.M., Lehmann, C.U.: An“Infodemic”: leveraging high-volume Twitter data to understand public sentiment for the COVID-19 outbreak. medRxiv (2020)
46.
go back to reference Kapusta, J., Hájek, P., Munk, M., Benko, Ľ: Comparison of fake and real news based on morphological analysis. Procedia Comput. Sci. 171, 2285–2293 (2020) CrossRef Kapusta, J., Hájek, P., Munk, M., Benko, Ľ: Comparison of fake and real news based on morphological analysis. Procedia Comput. Sci. 171, 2285–2293 (2020) CrossRef
47.
go back to reference Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decis. Negot. 13(1), 81–106 (2004) CrossRef Zhou, L., Burgoon, J.K., Nunamaker, J.F., Twitchell, D.: Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decis. Negot. 13(1), 81–106 (2004) CrossRef
48.
go back to reference Yancheva, M., Rudzicz, F.: Automatic detection of deception in child-produced speech using syntactic complexity features. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 944–953 (2013) Yancheva, M., Rudzicz, F.: Automatic detection of deception in child-produced speech using syntactic complexity features. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 944–953 (2013)
49.
go back to reference Pérez-Rosas, V., Mihalcea, R.: Experiments in open domain deception detection. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1120–1125 (2015) Pérez-Rosas, V., Mihalcea, R.: Experiments in open domain deception detection. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1120–1125 (2015)
50.
go back to reference Rubin, V.L., Vashchilko, T.: Identification of truth and deception in text: application of vector space model to rhetorical structure theory. In: Proceedings of the Workshop on Computational Approaches to Deception Detection, pp. 97–106 (2012) Rubin, V.L., Vashchilko, T.: Identification of truth and deception in text: application of vector space model to rhetorical structure theory. In: Proceedings of the Workshop on Computational Approaches to Deception Detection, pp. 97–106 (2012)
51.
go back to reference Kleinberg, B., Mozes, M., Arntz, A., Verschuere, B.: Using named entities for computer-automated verbal deception detection. J. Forensic Sci. 63(3), 714–723 (2017) Kleinberg, B., Mozes, M., Arntz, A., Verschuere, B.: Using named entities for computer-automated verbal deception detection. J. Forensic Sci. 63(3), 714–723 (2017)
52.
go back to reference Lai, C.C., Liu, Y.H., Wang, C.Y., Wang, Y.H., Hsueh, S.C., Yen, M.Y., Hsueh, P.R.: Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): facts and myths. J. Microbiol. Immunol. Infect. 53, 404–412 (2020) CrossRef Lai, C.C., Liu, Y.H., Wang, C.Y., Wang, Y.H., Hsueh, S.C., Yen, M.Y., Hsueh, P.R.: Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARSCoV-2): facts and myths. J. Microbiol. Immunol. Infect. 53, 404–412 (2020) CrossRef
53.
go back to reference Santia, G., Williams, J.: Buzzface: a news veracity dataset with facebook user commentary and egos. In: Proceedings of the International AAAI Conference on Web and Social Media, Vol. 12, No. 1 (2018) Santia, G., Williams, J.: Buzzface: a news veracity dataset with facebook user commentary and egos. In: Proceedings of the International AAAI Conference on Web and Social Media, Vol. 12, No. 1 (2018)
54.
go back to reference Derczynski, L., Bontcheva, K.: Pheme: Veracity in digital social networks. In: UMAP Workshops (2014) Derczynski, L., Bontcheva, K.: Pheme: Veracity in digital social networks. In: UMAP Workshops (2014)
55.
go back to reference Salem, F.K.A., Al Feel, R., Elbassuoni, S., Jaber, M., Farah, M.: Fa-kes: a fake news dataset around the Syrian war. In: Proceedings of the International AAAI Conference on Web and Social Media, Vol. 13, pp. 573–582 (2019) Salem, F.K.A., Al Feel, R., Elbassuoni, S., Jaber, M., Farah, M.: Fa-kes: a fake news dataset around the Syrian war. In: Proceedings of the International AAAI Conference on Web and Social Media, Vol. 13, pp. 573–582 (2019)
56.
go back to reference Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Suchomel, V.: The Sketch Engine: ten years on. Lexicography 1(1), 7–36 (2014) CrossRef Kilgarriff, A., Baisa, V., Bušta, J., Jakubíček, M., Kovář, V., Michelfeit, J., Suchomel, V.: The Sketch Engine: ten years on. Lexicography 1(1), 7–36 (2014) CrossRef
57.
go back to reference McCarthy, P.M.: An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD). Doctoral dissertation, The University of Memphis (2005) McCarthy, P.M.: An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD). Doctoral dissertation, The University of Memphis (2005)
58.
go back to reference Gries, S.T.: Dispersions and adjusted frequencies in corpora. Int. J. Corpus Linguist. 13(4), 403–437 (2008) CrossRef Gries, S.T.: Dispersions and adjusted frequencies in corpora. Int. J. Corpus Linguist. 13(4), 403–437 (2008) CrossRef
59.
go back to reference Lijffijt, J., Gries, S.T.: Dispersions and adjusted frequencies in corpora. Int. J. Corpus Linguist. 13(4), 403–437 (2012) Lijffijt, J., Gries, S.T.: Dispersions and adjusted frequencies in corpora. Int. J. Corpus Linguist. 13(4), 403–437 (2012)
60.
go back to reference Heise, D.R.: Surveying Cultures: Discovering Shared Conceptions and Sentiments. Wiley, Hoboken (2010) Heise, D.R.: Surveying Cultures: Discovering Shared Conceptions and Sentiments. Wiley, Hoboken (2010)
61.
go back to reference Smith-Lovin, L., Heise, D.R. (eds.): Analyzing Social Interaction: Advances in Affect Control Theory. Taylor & Francis, Milton Park (1988) Smith-Lovin, L., Heise, D.R. (eds.): Analyzing Social Interaction: Advances in Affect Control Theory. Taylor & Francis, Milton Park (1988)
62.
go back to reference Joseph, K.: New methods for large-scale analyses of social identities and stereotypes (2016) Joseph, K.: New methods for large-scale analyses of social identities and stereotypes (2016)
63.
go back to reference Xiang, R., Li, J., Wan, M., Gu, J., Lu, Q., Li, W., Huang, C.R.: Affective awareness in neural sentiment analysis. Knowl.-Based Syst. 226, 107137 (2021) CrossRef Xiang, R., Li, J., Wan, M., Gu, J., Lu, Q., Li, W., Huang, C.R.: Affective awareness in neural sentiment analysis. Knowl.-Based Syst. 226, 107137 (2021) CrossRef
64.
go back to reference Hosmer, D.W., Jr., Lemeshow, R.S., Sturdivant, X.: Applied Logistic Regression, vol. 398. Wiley, New York (2013) Hosmer, D.W., Jr., Lemeshow, R.S., Sturdivant, X.: Applied Logistic Regression, vol. 398. Wiley, New York (2013)
65.
go back to reference Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. Working papers/Lund University, Department of Linguistics and Phonetics. vol. 53, pp. 61–79 (2008) Johansson, V.: Lexical diversity and lexical density in speech and writing: a developmental perspective. Working papers/Lund University, Department of Linguistics and Phonetics. vol. 53, pp. 61–79 (2008)
66.
go back to reference Drif, A., Hamida, Z.F., GiorDrif, A., Hamida, Z.F., Giordano, S.: Fake news detection method based on text-features. ResearchGate (2019) Drif, A., Hamida, Z.F., GiorDrif, A., Hamida, Z.F., Giordano, S.: Fake news detection method based on text-features. ResearchGate (2019)
67.
go back to reference Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: AAMAS, pp. 905–912 (2011) Black, E., Atkinson, K.: Choosing persuasive arguments for action. In: AAMAS, pp. 905–912 (2011)
68.
go back to reference Cummings, L.: Scaring the public: fear appeal arguments in public health reasoning. Informal Logic 32(1), 25–50 (2012) MathSciNetCrossRef Cummings, L.: Scaring the public: fear appeal arguments in public health reasoning. Informal Logic 32(1), 25–50 (2012) MathSciNetCrossRef
Metadata
Title
Data-driven analytics of COVID-19 ‘infodemic’
Authors
Minyu Wan
Qi Su
Rong Xiang
Chu-Ren Huang
Publication date
14-06-2022
Publisher
Springer International Publishing
Published in
International Journal of Data Science and Analytics
Print ISSN: 2364-415X
Electronic ISSN: 2364-4168
DOI
https://doi.org/10.1007/s41060-022-00339-8

Premium Partner