Skip to main content
Top

2021 | OriginalPaper | Chapter

Data-Driven Deep Learning Emulators for Geophysical Forecasting

Authors : Varuni Katti Sastry, Romit Maulik, Vishwas Rao, Bethany Lusch, S. Ashwin Renganathan, Rao Kotamarthi

Published in: Computational Science – ICCS 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We perform a comparative study of different supervised machine learning time-series methods for short-term and long-term temperature forecasts on a real world dataset for the daily maximum temperature over North America given by DayMET. DayMET showcases a stochastic and high-dimensional spatio-temporal structure and is available at exceptionally fine resolution (a 1 km grid). We apply projection-based reduced order modeling to compress this high dimensional data, while preserving its spatio-temporal structure. We use variants of time-series specific neural network models on this reduced representation to perform multi-step weather predictions. We also use a Gaussian-process based error correction model to improve the forecasts from the neural network models. From our study, we learn that the recurrent neural network based techniques can accurately perform both short-term as well as long-term forecasts, with minimal computational cost as compared to the convolution based techniques. We see that the simple kernel based Gaussian-processes can also predict the neural network model errors, which can then be used to improve the long term forecasts.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ciscar, J.-C., et al.: Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. 108(7), 2678–2683 (2011) Ciscar, J.-C., et al.: Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. 108(7), 2678–2683 (2011)
2.
go back to reference Gosling, S.N., Lowe, J.A., McGregor, G.R., Pelling, M., Malamud, B.D.: Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim. Change 92(3), 299–341 (2009) Gosling, S.N., Lowe, J.A., McGregor, G.R., Pelling, M., Malamud, B.D.: Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim. Change 92(3), 299–341 (2009)
3.
go back to reference Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., Yacalis, G.: Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett. 45(11), 5742–5751 (2018)CrossRef Gentine, P., Pritchard, M., Rasp, S., Reinaudi, G., Yacalis, G.: Could machine learning break the convection parameterization deadlock? Geophys. Res. Lett. 45(11), 5742–5751 (2018)CrossRef
4.
go back to reference Brenowitz, N.D., Bretherton, C.S.: Prognostic validation of a neural network unified physics parameterization. Geophys. Rese. Lett. 45(12), 6289–6298 (2018) Brenowitz, N.D., Bretherton, C.S.: Prognostic validation of a neural network unified physics parameterization. Geophys. Rese. Lett. 45(12), 6289–6298 (2018)
5.
go back to reference Rasp, S., Pritchard, M.S., Gentine, P.: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. 115(39), 9684–9689 (2018) Rasp, S., Pritchard, M.S., Gentine, P.: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. 115(39), 9684–9689 (2018)
6.
go back to reference Nooteboom, P.D., Feng, Q.Y., López, C., Hernández-García, E., Dijkstra, H.A.: Using network theory and machine learning to predict el niño. Earth Syst. Dyn. 9(3), 969–983 (2018) Nooteboom, P.D., Feng, Q.Y., López, C., Hernández-García, E., Dijkstra, H.A.: Using network theory and machine learning to predict el niño. Earth Syst. Dyn. 9(3), 969–983 (2018)
7.
go back to reference Moosavi, A., Rao, V., Sandu, A.: Machine learning based algorithms for uncertainty quantification in numerical weather prediction models. J. Comput. Sci. 101295 (2021) Moosavi, A., Rao, V., Sandu, A.: Machine learning based algorithms for uncertainty quantification in numerical weather prediction models. J. Comput. Sci. 101295 (2021)
8.
go back to reference Liu, Y., et al.: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv:1605.01156 (2016) Liu, Y., et al.: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv:​1605.​01156 (2016)
9.
go back to reference Scher, S.: Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning. Geophys. Res. Lett. 45(22), 12–616 (2018)CrossRef Scher, S.: Toward data-driven weather and climate forecasting: Approximating a simple general circulation model with deep learning. Geophys. Res. Lett. 45(22), 12–616 (2018)CrossRef
10.
go back to reference Weyn, J.A., Durran, D.R., Caruana, R.: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. J. Adv. Model. Earth Syst. 12(9), e2020MS002109 (2020) Weyn, J.A., Durran, D.R., Caruana, R.: Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. J. Adv. Model. Earth Syst. 12(9), e2020MS002109 (2020)
11.
go back to reference Rasp, S., Thuerey, N.: Purely data-driven medium-range weather forecasting achieves comparable skill to physical models at similar resolution. arXiv:2008.08626 (2020) Rasp, S., Thuerey, N.: Purely data-driven medium-range weather forecasting achieves comparable skill to physical models at similar resolution. arXiv:​2008.​08626 (2020)
12.
go back to reference Chattopadhyay, A., Nabizadeh, E., Hassanzadeh, P.: Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst. 12(2), e2019MS001958 (2020) Chattopadhyay, A., Nabizadeh, E., Hassanzadeh, P.: Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst. 12(2), e2019MS001958 (2020)
13.
go back to reference Rodrigues, E.R., Oliveira, I., Cunha, R., Netto, M.: Deepdownscale: a deep learning strategy for high-resolution weather forecast. In: 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 415–422. IEEE (2018) Rodrigues, E.R., Oliveira, I., Cunha, R., Netto, M.: Deepdownscale: a deep learning strategy for high-resolution weather forecast. In: 2018 IEEE 14th International Conference on e-Science (e-Science), pp. 415–422. IEEE (2018)
14.
go back to reference Shi, X., Chen, Z., Wang, H., Yeung, D.-Y. Wong, W.-K., Woo, W.-C.: Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:1506.04214 (2015) Shi, X., Chen, Z., Wang, H., Yeung, D.-Y. Wong, W.-K., Woo, W.-C.: Convolutional lstm network: a machine learning approach for precipitation nowcasting. arXiv:​1506.​04214 (2015)
15.
go back to reference Maulik, R., Egele, R., Lusch, B., Balaprakash, P.: Recurrent Neural Network Architecture Search for Geophysical Emulation. IEEE Press (2020) Maulik, R., Egele, R., Lusch, B., Balaprakash, P.: Recurrent Neural Network Architecture Search for Geophysical Emulation. IEEE Press (2020)
17.
go back to reference Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H.A., Kumar, V.: Machine learning for the geosciences: challenges and opportunities. IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2018) Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H.A., Kumar, V.: Machine learning for the geosciences: challenges and opportunities. IEEE Trans. Knowl. Data Eng. 31(8), 1544–1554 (2018)
18.
go back to reference Dueben, P.D., Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning. Geosci. Model Dev. 11(10), 3999–4009 (2018) Dueben, P.D., Bauer, P.: Challenges and design choices for global weather and climate models based on machine learning. Geosci. Model Dev. 11(10), 3999–4009 (2018)
19.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
20.
go back to reference Rahman, S.M., Pawar, S., San, O., Rasheed, A., Iliescu, T.: Nonintrusive reduced order modeling framework for quasigeostrophic turbulence. Phys. Rev. E 100(5), 053306 (2019) Rahman, S.M., Pawar, S., San, O., Rasheed, A., Iliescu, T.: Nonintrusive reduced order modeling framework for quasigeostrophic turbulence. Phys. Rev. E 100(5), 053306 (2019)
21.
go back to reference Mohan, A.T., Gaitonde, D.V.: A deep learning based approach to reduced order modeling for turbulent flow control using lSTM neural networks. arXiv:1804.09269 (2018) Mohan, A.T., Gaitonde, D.V.: A deep learning based approach to reduced order modeling for turbulent flow control using lSTM neural networks. arXiv:​1804.​09269 (2018)
22.
go back to reference Maulik, R., Lusch, B., Balaprakash, P.: Non-autoregressive time-series methods for stable parametric reduced-order models. Phys. Fluids 32(8), 087115 (2020) Maulik, R., Lusch, B., Balaprakash, P.: Non-autoregressive time-series methods for stable parametric reduced-order models. Phys. Fluids 32(8), 087115 (2020)
23.
go back to reference Taira, K.: Modal analysis of fluid flows: applications and outlook. AIAA J. 1–25 (2019) Taira, K.: Modal analysis of fluid flows: applications and outlook. AIAA J. 1–25 (2019)
24.
go back to reference Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRef Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRef
25.
go back to reference Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, vol. 36. Princeton University, New Jersey (1998) Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, vol. 36. Princeton University, New Jersey (1998)
26.
go back to reference Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000) Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 808–817 (2000)
27.
go back to reference Maulik, R., Mohan, A., Lusch, B., Madireddy, S., Balaprakash, P., Livescu, D.: Time-series learning of latent-space dynamics for reduced-order model closure. Phys. D: Nonlinear Phenom. 405, 132368 (2020) Maulik, R., Mohan, A., Lusch, B., Madireddy, S., Balaprakash, P., Livescu, D.: Time-series learning of latent-space dynamics for reduced-order model closure. Phys. D: Nonlinear Phenom. 405, 132368 (2020)
28.
29.
go back to reference Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)MathSciNetCrossRef Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)MathSciNetCrossRef
31.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997) Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
32.
go back to reference Karevan, Z., Suykens, J.A.K.: Transductive lstm for time-series prediction: an application to weather forecasting. Neural Netw. 125, 1–9 (2020) Karevan, Z., Suykens, J.A.K.: Transductive lstm for time-series prediction: an application to weather forecasting. Neural Netw. 125, 1–9 (2020)
33.
go back to reference Zhang, Q., Wang, H., Dong, J., Zhong, G., Sun, X.: Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 05 (2017) Zhang, Q., Wang, H., Dong, J., Zhong, G., Sun, X.: Prediction of sea surface temperature using long short-term memory. IEEE Geosci. Remote Sens. Lett. 05 (2017)
34.
go back to reference Broni-Bediako, C., Katsriku, F., Unemi, T., Shinomiya, N., Abdulai, J.-D., Atsumi, M.: El niño-southern oscillation forecasting using complex networks analysis of lstm neural networks. vol. 01 (2018) Broni-Bediako, C., Katsriku, F., Unemi, T., Shinomiya, N., Abdulai, J.-D., Atsumi, M.: El niño-southern oscillation forecasting using complex networks analysis of lstm neural networks. vol. 01 (2018)
35.
go back to reference Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)CrossRef Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)CrossRef
36.
go back to reference Namini, S.S., Tavakoli, N., Namin, A.S.: The performance of LSTM and biLSTM in forecasting time series. vol. 12, pp. 3285–3292 (2019) Namini, S.S., Tavakoli, N., Namin, A.S.: The performance of LSTM and biLSTM in forecasting time series. vol. 12, pp. 3285–3292 (2019)
37.
go back to reference Socher, R., Lin, C., Ng, A., Manning, C.: Parsing natural scenes and natural language with recursive neural networks, vol. 01, pp. 129–136 (2011) Socher, R., Lin, C., Ng, A., Manning, C.: Parsing natural scenes and natural language with recursive neural networks, vol. 01, pp. 129–136 (2011)
38.
go back to reference Shen, G., Kurths, J., Yuan, Y.: Sequence-to-sequence prediction of spatiotemporal systems. Chaos: Interdiscip. J. Nonlinear Sci. 30(2), 023102 (2020) Shen, G., Kurths, J., Yuan, Y.: Sequence-to-sequence prediction of spatiotemporal systems. Chaos: Interdiscip. J. Nonlinear Sci. 30(2), 023102 (2020)
39.
go back to reference Ciresan, D., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification, vol. 07, pp. 1237–1242 (2011) Ciresan, D., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification, vol. 07, pp. 1237–1242 (2011)
40.
go back to reference Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017) Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)
41.
go back to reference Bai, S., Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, vol. 03 (2018) Bai, S., Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, vol. 03 (2018)
42.
go back to reference Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y.: Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 10(1), 1–15 (2020) Yan, J., Mu, L., Wang, L., Ranjan, R., Zomaya, A.Y.: Temporal convolutional networks for the advance prediction of ENSO. Sci. Rep. 10(1), 1–15 (2020)
44.
go back to reference Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271 (2018) Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:​1803.​01271 (2018)
45.
go back to reference Sapsis, T.P., Majda, A.J.: Blending modified gaussian closure and non-gaussian reduced subspace methods for turbulent dynamical systems. J. Nonlinear Sci. 23(6), 1039–1071 (2013) Sapsis, T.P., Majda, A.J.: Blending modified gaussian closure and non-gaussian reduced subspace methods for turbulent dynamical systems. J. Nonlinear Sci. 23(6), 1039–1071 (2013)
46.
go back to reference Rasmussen, C.E.: Gaussian processes in machine learning. In Summer School on Machine Learning, pp. 63–71. Springer, Berlin (2003) Rasmussen, C.E.: Gaussian processes in machine learning. In Summer School on Machine Learning, pp. 63–71. Springer, Berlin (2003)
47.
go back to reference Thornton, M.M., Thornton, P.E., Wei, Y., Mayer, B.W., Cook, R.B., Vose, R.S.: Daymet: Annual climate summaries on a 1-km grid for north America, version 3. Ornl Daac, Oak Ridge, Tennessee, USA (2016) Thornton, M.M., Thornton, P.E., Wei, Y., Mayer, B.W., Cook, R.B., Vose, R.S.: Daymet: Annual climate summaries on a 1-km grid for north America, version 3. Ornl Daac, Oak Ridge, Tennessee, USA (2016)
Metadata
Title
Data-Driven Deep Learning Emulators for Geophysical Forecasting
Authors
Varuni Katti Sastry
Romit Maulik
Vishwas Rao
Bethany Lusch
S. Ashwin Renganathan
Rao Kotamarthi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-77977-1_35

Premium Partner