Skip to main content
Top
Published in: Peer-to-Peer Networking and Applications 5/2020

06-03-2020

Data driven hybrid edge computing-based hierarchical task guidance for efficient maritime escorting with multiple unmanned surface vehicles

Authors: Jiajia Xie, Jun Luo, Yan Peng, Shaorong Xie, Huayan Pu, Xiaomao Li, Zhou Su, Yuan Liu, Rui Zhou

Published in: Peer-to-Peer Networking and Applications | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advancement of hardware and software technology makes multiple cooperative unmanned surface vehicles (USVs) utilized in maritime escorting with low cost and high efficiency. USVs can work as edge computing devices to locally and cooperatively perform heavy computational tasks without dependence of remote cloud servers. As such, we organize a team of USVs to escort a high value ship (e.g., mother ship) in a complex maritime environment with hostile intruder ships, where the significant challenge is to learn cooperation of USVs and assign each USV tasks to achieve optimal performance. To this end, in this paper, a hierarchical scheme is proposed for the USV team to guard a valuable ship, which belongs to problems of sparse rewards and long-time horizons in multi-agent reinforcement learning. The core idea utilized in the proposed scheme is centralized training with decentralized execution, where USVs learn policies to guard a high-value ship with extra shared environmental data from other USVs through communication. Specifically, the ships are divided into two groups, i.e., high-level ship and low-level USVs. The high-level ship optimizes decision-level policy to predict intercept points, while each low-level USV utilizes multi-agent reinforcement learning to learn task-level policy to intercept intruders. The hierarchical task guidance is exploited in maritime escorting, whereby high-level ship’s decision-level policy guides the training and execution of task-level policies of USVs. Simulation results and experiment analysis show that the proposed hierarchical scheme can efficiently execute the escort mission.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu Z, Zhang Y, Yu X, Yuan C (2016) Unmanned surface vehicles: an overview of developments and challenges. Annual Reviews in Control 41:71CrossRef Liu Z, Zhang Y, Yu X, Yuan C (2016) Unmanned surface vehicles: an overview of developments and challenges. Annual Reviews in Control 41:71CrossRef
6.
go back to reference Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529CrossRef Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529CrossRef
7.
go back to reference Peng P, Yuan Q, Wen Y, Yang Y, Tang Z, Long H, Wang J (2017) Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv:1703.10069 2 Peng P, Yuan Q, Wen Y, Yang Y, Tang Z, Long H, Wang J (2017) Multiagent bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv:1703.​10069 2
8.
go back to reference Silver D, Huang A, Maddison C J, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484CrossRef Silver D, Huang A, Maddison C J, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, et al. (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529(7587):484CrossRef
9.
go back to reference Xu Z, Wang Y, Tang J, Wang J, Gursoy MC (2017) A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs. In: 2017 IEEE international conference on communications (ICC). IEEE, pp 1–6 Xu Z, Wang Y, Tang J, Wang J, Gursoy MC (2017) A deep reinforcement learning based framework for power-efficient resource allocation in cloud RANs. In: 2017 IEEE international conference on communications (ICC). IEEE, pp 1–6
10.
go back to reference Isele D, Rahimi R, Cosgun A, Subramanian K, Fujimura K (2018) Navigating occluded intersections with autonomous vehicles using deep reinforcement learning. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2034–2039 Isele D, Rahimi R, Cosgun A, Subramanian K, Fujimura K (2018) Navigating occluded intersections with autonomous vehicles using deep reinforcement learning. In: 2018 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2034–2039
11.
go back to reference Cheng Y, Zhang W (2018) Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels. Neurocomputing 272:63CrossRef Cheng Y, Zhang W (2018) Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels. Neurocomputing 272:63CrossRef
12.
go back to reference Zhang R, Tang P, Su Y, Li X, Yang G, Shi C (2014) An adaptive obstacle avoidance algorithm for unmanned surface vehicle in complicated marine environments. IEEE/CAA Journal of Automatica Sinica 1(4):385CrossRef Zhang R, Tang P, Su Y, Li X, Yang G, Shi C (2014) An adaptive obstacle avoidance algorithm for unmanned surface vehicle in complicated marine environments. IEEE/CAA Journal of Automatica Sinica 1(4):385CrossRef
13.
go back to reference Russell SJ, Norvig P (2016) Artificial intelligence: A modern approach. Pearson Education Limited, MalaysiaMATH Russell SJ, Norvig P (2016) Artificial intelligence: A modern approach. Pearson Education Limited, MalaysiaMATH
14.
go back to reference Wu Y, Ni K, Zhang C, Qian LP, Tsang DH (2018) NOMA-assisted multi-access mobile edge computing: a joint optimization of computation offloading and time allocation. IEEE Trans Veh Technol 67(12):12244–12258CrossRef Wu Y, Ni K, Zhang C, Qian LP, Tsang DH (2018) NOMA-assisted multi-access mobile edge computing: a joint optimization of computation offloading and time allocation. IEEE Trans Veh Technol 67(12):12244–12258CrossRef
15.
go back to reference Duarte MAF (2016) Engineering evolutionary control for real-world robotic systems. Ph.D. thesis, ISCTE-Instituto Universitario de Lisboa (Portugal) Duarte MAF (2016) Engineering evolutionary control for real-world robotic systems. Ph.D. thesis, ISCTE-Instituto Universitario de Lisboa (Portugal)
16.
go back to reference Qin Z, Lin Z, Yang D, Li P (2017) A task-based hierarchical control strategy for autonomous motion of an unmanned surface vehicle swarm. Applied Ocean Research 65:251CrossRef Qin Z, Lin Z, Yang D, Li P (2017) A task-based hierarchical control strategy for autonomous motion of an unmanned surface vehicle swarm. Applied Ocean Research 65:251CrossRef
17.
go back to reference Simetti E, Turetta A, Casalino G, Storti E, Cresta M (2010) Protecting assets within a civilian harbour through the use of a team of usvs: Interception of possible menaces. In: IARP workshop on robots for risky interventions and environmental surveillance-maintenance (RISE’10), Sheffield, UK Simetti E, Turetta A, Casalino G, Storti E, Cresta M (2010) Protecting assets within a civilian harbour through the use of a team of usvs: Interception of possible menaces. In: IARP workshop on robots for risky interventions and environmental surveillance-maintenance (RISE’10), Sheffield, UK
18.
go back to reference Raboin E, Švec P, Nau DS, Gupta SK (2015) Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats. Autonomous Robots 38(3):261CrossRef Raboin E, Švec P, Nau DS, Gupta SK (2015) Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats. Autonomous Robots 38(3):261CrossRef
19.
go back to reference Savkin AV, Marzoughi A (2017) Distributed control of a robotic network for protection of a region from intruders. In: 2017 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, pp 804–808 Savkin AV, Marzoughi A (2017) Distributed control of a robotic network for protection of a region from intruders. In: 2017 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, pp 804–808
20.
go back to reference Fang F, Jiang AX, Tambe M (2013) Designing optimal patrol strategy for protecting moving targets with multiple mobile resources. In: International workshop on optimisation in multi-agent systems (OPTMAS) Fang F, Jiang AX, Tambe M (2013) Designing optimal patrol strategy for protecting moving targets with multiple mobile resources. In: International workshop on optimisation in multi-agent systems (OPTMAS)
21.
go back to reference Foerster JN, Farquhar G, Afouras T, Nardelli N, Whiteson S (2018) Counterfactual multi-agent policy gradients. In: Thirty-second AAAI conference on artificial intelligence Foerster JN, Farquhar G, Afouras T, Nardelli N, Whiteson S (2018) Counterfactual multi-agent policy gradients. In: Thirty-second AAAI conference on artificial intelligence
22.
go back to reference Lowe R, Wu Y, Tamar A, Harb J, Abbeel OP, Mordatch I (2017) Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in neural information processing systems, pp 6379–6390 Lowe R, Wu Y, Tamar A, Harb J, Abbeel OP, Mordatch I (2017) Multi-agent actor-critic for mixed cooperative-competitive environments. In: Advances in neural information processing systems, pp 6379–6390
23.
go back to reference Oliehoek FA, Spaan MT, Vlassis N (2008) Optimal and approximate Q-value functions for decentralized POMDPs. J Artif Intell Res 32:289MathSciNetCrossRef Oliehoek FA, Spaan MT, Vlassis N (2008) Optimal and approximate Q-value functions for decentralized POMDPs. J Artif Intell Res 32:289MathSciNetCrossRef
24.
go back to reference Nantogma S, Ran W, Yang X, Xiaoqin H (2019) Behavior-based genetic fuzzy control system for multiple USVs cooperative target protection. In: 2019 3rd international symposium on autonomous systems (ISAS). IEEE, pp 181–186 Nantogma S, Ran W, Yang X, Xiaoqin H (2019) Behavior-based genetic fuzzy control system for multiple USVs cooperative target protection. In: 2019 3rd international symposium on autonomous systems (ISAS). IEEE, pp 181–186
25.
go back to reference Kuyer L, Whiteson S, Bakker B, Vlassis N (2008) Multiagent reinforcement learning for urban traffic control using coordination graphs. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 656–671 Kuyer L, Whiteson S, Bakker B, Vlassis N (2008) Multiagent reinforcement learning for urban traffic control using coordination graphs. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 656–671
26.
go back to reference Bakker B, Whiteson S, Kester L, Groen FC (2010) Traffic light control by multiagent reinforcement learning systems. In: Interactive collaborative information systems. Springer, pp 475–510 Bakker B, Whiteson S, Kester L, Groen FC (2010) Traffic light control by multiagent reinforcement learning systems. In: Interactive collaborative information systems. Springer, pp 475–510
27.
go back to reference Wiering M (2000) Multi-agent reinforcement learning for traffic light control. In: Machine learning: Proceedings of the seventeenth international conference (ICML’2000), pp 1151–1158 Wiering M (2000) Multi-agent reinforcement learning for traffic light control. In: Machine learning: Proceedings of the seventeenth international conference (ICML’2000), pp 1151–1158
28.
go back to reference Mason K, Mannion P, Duggan J, Howley E (2016) Applying multi-agent reinforcement learning to watershed management. In: Proceedings of the adaptive and learning agents workshop (at AAMAS 2016) Mason K, Mannion P, Duggan J, Howley E (2016) Applying multi-agent reinforcement learning to watershed management. In: Proceedings of the adaptive and learning agents workshop (at AAMAS 2016)
29.
go back to reference Buṡoniu L, Babuška R, De Schutter B (2010) Multi-agent reinforcement learning: An overview. In: Innovations in multi-agent systems and applications-1. Springer, pp 183–221 Buṡoniu L, Babuška R, De Schutter B (2010) Multi-agent reinforcement learning: An overview. In: Innovations in multi-agent systems and applications-1. Springer, pp 183–221
30.
go back to reference Palmer G, Tuyls K, Bloembergen D, Savani R (2018) Lenient multi-agent deep reinforcement learning. In: Proceedings of the 17th international conference on autonomous agents and multiagent systems (International foundation for autonomous agents and multiagent systems), pp 443–451 Palmer G, Tuyls K, Bloembergen D, Savani R (2018) Lenient multi-agent deep reinforcement learning. In: Proceedings of the 17th international conference on autonomous agents and multiagent systems (International foundation for autonomous agents and multiagent systems), pp 443–451
31.
go back to reference Sukhbaatar S, Fergus R, et al (2016) Learning multiagent communication with backpropagation. In: Advances in neural information processing systems, pp 2244–2252 Sukhbaatar S, Fergus R, et al (2016) Learning multiagent communication with backpropagation. In: Advances in neural information processing systems, pp 2244–2252
32.
go back to reference Yang Y, Luo R, Li M, Zhou M, Zhang W, Wang J (2018) Mean field multi-agent reinforcement learning. arXiv:1802.05438 Yang Y, Luo R, Li M, Zhou M, Zhang W, Wang J (2018) Mean field multi-agent reinforcement learning. arXiv:1802.​05438
33.
go back to reference Omidshafiei S, Pazis J, Amato C, How JP, Vian J (2017) Deep decentralized multi-task multi-agent reinforcement learning under partial observability. In: Proceedings of the 34th international conference on machine learning-volume 70. JMLR. org, pp 2681–2690 Omidshafiei S, Pazis J, Amato C, How JP, Vian J (2017) Deep decentralized multi-task multi-agent reinforcement learning under partial observability. In: Proceedings of the 34th international conference on machine learning-volume 70. JMLR. org, pp 2681–2690
34.
go back to reference Bishop G, Welch G, et al (2001) An introduction to the kalman filter. Proc of SIGGRAPH, Course 8 (27599–23175):41 Bishop G, Welch G, et al (2001) An introduction to the kalman filter. Proc of SIGGRAPH, Course 8 (27599–23175):41
35.
go back to reference Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press, CambridgeMATH Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press, CambridgeMATH
36.
go back to reference Lu X (2012) Multi-agent reinforcement learning in games. Ph.D. thesis, Carleton University Lu X (2012) Multi-agent reinforcement learning in games. Ph.D. thesis, Carleton University
37.
go back to reference Mordatch I, Abbeel P (2018) Emergence of grounded compositional language in multi-agent populations. In: Thirty-scond AAAI conference on artificial intelligence Mordatch I, Abbeel P (2018) Emergence of grounded compositional language in multi-agent populations. In: Thirty-scond AAAI conference on artificial intelligence
Metadata
Title
Data driven hybrid edge computing-based hierarchical task guidance for efficient maritime escorting with multiple unmanned surface vehicles
Authors
Jiajia Xie
Jun Luo
Yan Peng
Shaorong Xie
Huayan Pu
Xiaomao Li
Zhou Su
Yuan Liu
Rui Zhou
Publication date
06-03-2020
Publisher
Springer US
Published in
Peer-to-Peer Networking and Applications / Issue 5/2020
Print ISSN: 1936-6442
Electronic ISSN: 1936-6450
DOI
https://doi.org/10.1007/s12083-019-00857-6

Other articles of this Issue 5/2020

Peer-to-Peer Networking and Applications 5/2020 Go to the issue

Premium Partner