Skip to main content
Top

2022 | OriginalPaper | Chapter

Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds

Authors : Till Böttjer, Georg Ørnskov Rønsch, Cláudio Gomes, Devarajan Ramanujan, Alexandros Iosifidis, Peter Gorm Larsen

Published in: Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Throughout their useful life, plastic injection moulds operate in rapidly varying cyclic environments, and are prone to continual degradation. Quantifying the remaining useful life of moulds is a necessary step for minimizing unplanned downtime and part scrap, as well as scheduling preventive mould maintenance tasks such as cleaning and refurbishment. This paper presents a data-driven approach for identifying degradation progression and remaining useful life of moulds, using real-world production data. An industrial data set containing metrology measurements of a solidified plastic part, along with corresponding life-cycle data of 13 high production volume injection moulds, was analyzed. Multivariate Statistical Process Control techniques and XGBoost classification models were used for constructing data-driven models of mould degradation progression, and classifying mould state (early run-in, production, worn-out). Results show the XGBoost model developed using element metrology & relevant mould lifecycle data classifies worn-out moulds with an in-class accuracy of 88%. Lower in-class accuracy of 73% and 61% were achieved for the compared to mould-worn out less critical early run-in and production states respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ribeiro, I., Peças, P., Henriques, E.: Incorporating tool design into a comprehensive life cycle cost framework using the case of injection molding. J. Cleaner Prod. 53, 297–309 (2013)CrossRef Ribeiro, I., Peças, P., Henriques, E.: Incorporating tool design into a comprehensive life cycle cost framework using the case of injection molding. J. Cleaner Prod. 53, 297–309 (2013)CrossRef
2.
go back to reference Engelmann, P., Hayden, K., Guichelaar, P., Dealey, R., Monfore, M.: Injection mold wear mechanisms and mold design. Plast. Eng. 57, 40–46 (2001) Engelmann, P., Hayden, K., Guichelaar, P., Dealey, R., Monfore, M.: Injection mold wear mechanisms and mold design. Plast. Eng. 57, 40–46 (2001)
3.
go back to reference Zabala, B., et al.: Mechanism-based wear models for plastic injection moulds. Wear 440, 203105 (2019)CrossRef Zabala, B., et al.: Mechanism-based wear models for plastic injection moulds. Wear 440, 203105 (2019)CrossRef
4.
go back to reference Zhong, Z., Leong, M., Liu, X.: The wear rates and performance of three mold insert materials. Mater. Des. 32(2), 643–648 (2011) Zhong, Z., Leong, M., Liu, X.: The wear rates and performance of three mold insert materials. Mater. Des. 32(2), 643–648 (2011)
6.
go back to reference Ogorodnyk, O., Lyngstad, O.V., Larsen, M., Wang, K., Martinsen, K.: Application of machine learning methods for prediction of parts quality in thermoplastics injection molding. In: Wang, K., Wang, Y., Strandhagen, J.O., Yu, T. (eds.) IWAMA 2018. LNEE, vol. 484, pp. 237–244. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2375-1_30CrossRef Ogorodnyk, O., Lyngstad, O.V., Larsen, M., Wang, K., Martinsen, K.: Application of machine learning methods for prediction of parts quality in thermoplastics injection molding. In: Wang, K., Wang, Y., Strandhagen, J.O., Yu, T. (eds.) IWAMA 2018. LNEE, vol. 484, pp. 237–244. Springer, Singapore (2019). https://​doi.​org/​10.​1007/​978-981-13-2375-1_​30CrossRef
7.
go back to reference Frumosu, F.D., Rønsch, G.Ø., Kulahci, M.: Mould wear-out prediction in the plastic injection moulding industry: a case study. Int. J. Comput. Integr. Manuf. 33(12), 1245–1258 (2020)CrossRef Frumosu, F.D., Rønsch, G.Ø., Kulahci, M.: Mould wear-out prediction in the plastic injection moulding industry: a case study. Int. J. Comput. Integr. Manuf. 33(12), 1245–1258 (2020)CrossRef
8.
go back to reference Kazmer, D.O.: Injection mold design engineering. Carl Hanser Verlag GmbH Co KG (2016) Kazmer, D.O.: Injection mold design engineering. Carl Hanser Verlag GmbH Co KG (2016)
10.
go back to reference MacGregor, J., Kourti, T.: Statistical process control of multivariate processes. Control Eng. Pract. 3(3), 403–414 (1995)CrossRef MacGregor, J., Kourti, T.: Statistical process control of multivariate processes. Control Eng. Pract. 3(3), 403–414 (1995)CrossRef
11.
go back to reference Wold, S., Sjöström, M., Eriksson, L.: Pls-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58(2), 109–130 (2001)CrossRef Wold, S., Sjöström, M., Eriksson, L.: Pls-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58(2), 109–130 (2001)CrossRef
12.
go back to reference Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery (2016) Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery (2016)
Metadata
Title
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds
Authors
Till Böttjer
Georg Ørnskov Rønsch
Cláudio Gomes
Devarajan Ramanujan
Alexandros Iosifidis
Peter Gorm Larsen
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-90700-6_49

Premium Partners