Skip to main content
Top

2022 | OriginalPaper | Chapter

11. Data-Driven Machine Learning Applied to Liquid-Liquid Flow Pattern Prediction

Authors : Lívia O. Zampereti, André M. Quintino, Oscar M. H. Rodriguez

Published in: Multiphase Flow Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The chapter delves into the prediction of liquid-liquid flow patterns in pipes, a critical aspect of industrial processes, particularly in the oil and gas sector. Traditional methods rely on phenomenological models, but the advent of machine learning offers a data-driven approach to predict flow patterns with high accuracy. The study compiles a comprehensive database of experimental data and employs the Extreme Gradient Boosting (XGBoost) algorithm to train the model. The results show that machine learning can effectively predict flow pattern transitions, including the occurrence of core annular flow. However, the chapter also underscores the model's limitations in extrapolating beyond the available data. The findings are validated through detailed confusion matrices and graphical comparisons with experimental data, providing a robust assessment of the machine learning approach against conventional methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Literature
1.
go back to reference O.M. Rodriguez, M.S. Castro, Int. J. Multiph. Flow 58, 114–126 O.M. Rodriguez, M.S. Castro, Int. J. Multiph. Flow 58, 114–126
2.
go back to reference D. Barnea, Int. J. Multiph. Flow 13, 1–12 D. Barnea, Int. J. Multiph. Flow 13, 1–12
3.
go back to reference A. Bannwart, O. Rodriguez, C. de Carvalho, I. Wang, R. Vara, J. Energy Resour. Technol. 126(3), 184 A. Bannwart, O. Rodriguez, C. de Carvalho, I. Wang, R. Vara, J. Energy Resour. Technol. 126(3), 184
4.
go back to reference N. Brauner, D. Moalem Maron, Int. J. Multiph. Flow 18(1), 123–140 N. Brauner, D. Moalem Maron, Int. J. Multiph. Flow 18(1), 123–140
5.
go back to reference M. Al-Naser, M. Elshafei, A. Al-Sarkhi, J. Pet. Sci. Eng. 145, 548–564 M. Al-Naser, M. Elshafei, A. Al-Sarkhi, J. Pet. Sci. Eng. 145, 548–564
6.
go back to reference T. Trafalis, O. Oladunni, D. Papavassiliou, Ind. Eng. Chem. Res. 44(12), 4414–4426 T. Trafalis, O. Oladunni, D. Papavassiliou, Ind. Eng. Chem. Res. 44(12), 4414–4426
7.
go back to reference A.M. Quintino, D.L.L.N. da Rocha, R. Fonseca Jr., O.M.H. Rodriguez, J. Fluids Eng. 143, 1–11 A.M. Quintino, D.L.L.N. da Rocha, R. Fonseca Jr., O.M.H. Rodriguez, J. Fluids Eng. 143, 1–11
8.
go back to reference A. Quintino, D. da Rocha, O. Rodriguez, in 10th International Conference on Multiphase Flow (Rio de Janeiro) A. Quintino, D. da Rocha, O. Rodriguez, in 10th International Conference on Multiphase Flow (Rio de Janeiro)
9.
go back to reference J. Trallero, Oil-water flow patterns in horizontal pipes J. Trallero, Oil-water flow patterns in horizontal pipes
10.
go back to reference S. Yanmin, A. Wong, M. Kamal, Int. J. Pattern Recognit. Artif. Intell. 23(4), 687–719 S. Yanmin, A. Wong, M. Kamal, Int. J. Pattern Recognit. Artif. Intell. 23(4), 687–719
11.
go back to reference J.R. Thome, Encyclopedia of Two-Phase Heat Transfer and Flow I: Fundamentals and Methods (A 4-Volume Set) (World Scientific, 2015) J.R. Thome, Encyclopedia of Two-Phase Heat Transfer and Flow I: Fundamentals and Methods (A 4-Volume Set) (World Scientific, 2015)
13.
go back to reference F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, . Duchesnay, J. Mach. Learn. Res. 12, 2825–2830. https://doi.org/10.1007/s13398-014-0173-7.2 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, . Duchesnay, J. Mach. Learn. Res. 12, 2825–2830. https://​doi.​org/​10.​1007/​s13398-014-0173-7.​2
14.
go back to reference Grassi, Experimental validation of theoretical models in two-phase high-viscosity ratio liquid–liquid flows in horizontal and slightly inclined pipes Grassi, Experimental validation of theoretical models in two-phase high-viscosity ratio liquid–liquid flows in horizontal and slightly inclined pipes
15.
go back to reference Shi, An experimental investigation of high-viscosity oil-water flow in a horizontal pipe Shi, An experimental investigation of high-viscosity oil-water flow in a horizontal pipe
Metadata
Title
Data-Driven Machine Learning Applied to Liquid-Liquid Flow Pattern Prediction
Authors
Lívia O. Zampereti
André M. Quintino
Oscar M. H. Rodriguez
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-93456-9_11

Premium Partners