Skip to main content
Top

2024 | OriginalPaper | Chapter

Data-Driven Material Models for Engineering Materials Subjected to Arbitrary Loading Paths: Influence of the Dimension of the Dataset

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Engineering materials are subjected to complex stress states, mutable environmental conditions, and strain rates during their operating life. It is therefore paramount to develop methodologies capable of capturing their behaviour from experimental data, in order to predict their response under different thermo-mechanical sequences and histories. This is particularly relevant for materials that exhibit different strength in tension, compression, shear, and their combination, such as titanium alloys, magnesium alloys, composites, etc. The adoption of machine learning data-driven models obtained from arbitrary thermo-mechanical loading experiments provides an accurate and computationally efficient way to predict the response of engineering materials during loading sequences typical of real case scenarios. This study presents how neural networks with different structures can capture the response of materials measured during experiments carried out under arbitrary sequences of load. The effect of the data set size on the accuracy of the surrogate model is also assessed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tasdemir, B., Pellegrino, A., Tagarielli, V.: A strategy to formulate data-driven constitutive models from random multiaxial experiments. Sci. Rep. 12, 22248 (2022)CrossRef Tasdemir, B., Pellegrino, A., Tagarielli, V.: A strategy to formulate data-driven constitutive models from random multiaxial experiments. Sci. Rep. 12, 22248 (2022)CrossRef
2.
go back to reference Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A.: Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116(52), 26414–26420 (2019)CrossRef Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A.: Deep learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116(52), 26414–26420 (2019)CrossRef
3.
go back to reference Ge, W., Tagarielli, V.L.: A computational framework to establish data-driven constitutive models for time- or path-dependent heterogeneous solids. Sci. Rep. 11, 15916 (2021)CrossRef Ge, W., Tagarielli, V.L.: A computational framework to establish data-driven constitutive models for time- or path-dependent heterogeneous solids. Sci. Rep. 11, 15916 (2021)CrossRef
4.
go back to reference Tasdemir, B., Tagarielli, V., Pellegrino, A.: A data-driven model of the yield and strain hardening response of commercially pure titanium in uniaxial stress. Mater. Des. 229, 111878 (2023) Tasdemir, B., Tagarielli, V., Pellegrino, A.: A data-driven model of the yield and strain hardening response of commercially pure titanium in uniaxial stress. Mater. Des. 229, 111878 (2023)
5.
go back to reference Ghavamian, F., Simone, A.: Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput. Methods Appl. Mech. Eng. 357, 112594 (2019)MathSciNetCrossRef Ghavamian, F., Simone, A.: Accelerating multiscale finite element simulations of history-dependent materials using a recurrent neural network. Comput. Methods Appl. Mech. Eng. 357, 112594 (2019)MathSciNetCrossRef
6.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016) Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
7.
go back to reference Singh, P., Manure, A.: Introduction to TensorFlow 2.0. In: Learn TensorFlow 2.0, pp. 1–24. Apress, Berkeley (2020)CrossRef Singh, P., Manure, A.: Introduction to TensorFlow 2.0. In: Learn TensorFlow 2.0, pp. 1–24. Apress, Berkeley (2020)CrossRef
Metadata
Title
Data-Driven Material Models for Engineering Materials Subjected to Arbitrary Loading Paths: Influence of the Dimension of the Dataset
Authors
Burcu Tasdemir
Vito Tagarielli
Antonio Pellegrino
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-50474-7_13

Premium Partners