Skip to main content
Top

2019 | OriginalPaper | Chapter

Data-Driven Student Clusters Based on Online Learning Behavior in a Flipped Classroom with an Intelligent Tutoring System

Authors : Ines Šarić, Ani Grubišić, Ljiljana Šerić, Timothy J. Robinson

Published in: Intelligent Tutoring Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The idea of clustering students according to their online learning behavior has the potential of providing more adaptive scaffolding by the intelligent tutoring system itself or by a human teacher. With the aim of identifying groups of students who would benefit from the same intervention, in this paper, we study a set of 104 weekly behaviors observed for 26 students in a blended learning environment with AC-ware Tutor, an ontology-based intelligent tutoring system. Online learning behavior in AC-ware Tutor is described using 8 tracking variables: (i) the total number of content pages seen in the learning process; (ii) the total number of concepts seen in the learning process; (iii) the total content proficiency score gained online; (iv) the total time spent online; (v) the total number of student logins to AC-ware Tutor; (vi) the stereotype value after the initial test in AC-ware Tutor, (vii) the final stereotype value in the learning process, and (viii) the mean stereotype variability in the learning process. The previous measures are used in a four-step analysis process that includes the following elements: data preprocessing (Z-score normalization), dimensionality reduction (Principal component analysis), the clustering (K-means), and the analysis of a posttest performance on a content proficiency exam. By using the Euclidean distance in K-means clustering, we identified 4 distinct online learning behavior clusters, which we designate by the following names: Engaged Pre-knowers, Pre-knowers Non-finishers, Hard-workers, and Non-engagers. The posttest proficiency exam scores were compared among the aforementioned clusters using the Mann-Whitney U test.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lin-Siegler, X., Dweck, C.S., Cohen, G.L.: Instructional interventions that motivate classroom learning. J. Educ. Psychol. 108, 295–299 (2016)CrossRef Lin-Siegler, X., Dweck, C.S., Cohen, G.L.: Instructional interventions that motivate classroom learning. J. Educ. Psychol. 108, 295–299 (2016)CrossRef
3.
go back to reference Bouchet, F., Harley, J.M., Trevors, G.J., Azevedo, R.: Clustering and profiling students according to their interactions with an intelligent tutoring system fostering self-regulated learning. J. Educ. Data Min. JEDM. 5, 104–146 (2013) Bouchet, F., Harley, J.M., Trevors, G.J., Azevedo, R.: Clustering and profiling students according to their interactions with an intelligent tutoring system fostering self-regulated learning. J. Educ. Data Min. JEDM. 5, 104–146 (2013)
4.
go back to reference Vellido, A., Castro, F., Nebot, À.: Clustering educational data. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R. (eds.) Handbook of Educational Data Mining, pp. 75–92. CRC Press (2010) Vellido, A., Castro, F., Nebot, À.: Clustering educational data. In: Romero, C., Ventura, S., Pechenizkiy, M., Baker, R. (eds.) Handbook of Educational Data Mining, pp. 75–92. CRC Press (2010)
5.
go back to reference Amershi, S., Conati, C.: Combining unsupervised and supervised classification to build user models for exploratory. J. Educ. Data Min. JEDM. 1, 18–71 (2010) Amershi, S., Conati, C.: Combining unsupervised and supervised classification to build user models for exploratory. J. Educ. Data Min. JEDM. 1, 18–71 (2010)
6.
go back to reference Ferguson, R., Clow, D.: Examining engagement: analysing learner subpopulations in massive open online courses (MOOCs). In: Proceedings of the 5th International Conference on Learning Analytics and Knowledge - LAK 2015, pp. 51–58. ACM, Poughkeepsie (2015) Ferguson, R., Clow, D.: Examining engagement: analysing learner subpopulations in massive open online courses (MOOCs). In: Proceedings of the 5th International Conference on Learning Analytics and Knowledge - LAK 2015, pp. 51–58. ACM, Poughkeepsie (2015)
7.
go back to reference Rodrigo, M.M.T., Angloa, E.A., Sugaya, J.O., Baker, R.S.J.D.: Use of unsupervised clustering to characterize learner behaviors and affective states while using an intelligent tutoring system. In: International Conference on Computers in Education (2008) Rodrigo, M.M.T., Angloa, E.A., Sugaya, J.O., Baker, R.S.J.D.: Use of unsupervised clustering to characterize learner behaviors and affective states while using an intelligent tutoring system. In: International Conference on Computers in Education (2008)
8.
go back to reference Kizilcec, R.F., Piech, C., Schneider, E.: Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In: Proceedings of the 3rd International Conference on Learning Analytics and Knowledge - LAK 2013, pp. 170–179. ACM, New York (2013) Kizilcec, R.F., Piech, C., Schneider, E.: Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In: Proceedings of the 3rd International Conference on Learning Analytics and Knowledge - LAK 2013, pp. 170–179. ACM, New York (2013)
9.
go back to reference Grubišić, A.: Adaptive student’s knowledge acquisition model in e-learning systems, Ph.D. thesis, University of Zagreb, Croatia (2012) Grubišić, A.: Adaptive student’s knowledge acquisition model in e-learning systems, Ph.D. thesis, University of Zagreb, Croatia (2012)
10.
go back to reference Grubišić, A., et al.: Knowledge tracking variables in intelligent tutoring systems. In: Proceedings of the 9th International Conference on Computer Supported Education - CSEDU 2017, pp. 513–518. SCITEPRESS, Porto (2017) Grubišić, A., et al.: Knowledge tracking variables in intelligent tutoring systems. In: Proceedings of the 9th International Conference on Computer Supported Education - CSEDU 2017, pp. 513–518. SCITEPRESS, Porto (2017)
11.
go back to reference Arnold, K.E., Pistilli, M.D.: Course signals at Purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK 2012, pp. 267–270. ACM, New York (2012) Arnold, K.E., Pistilli, M.D.: Course signals at Purdue: using learning analytics to increase student success. In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge - LAK 2012, pp. 267–270. ACM, New York (2012)
Metadata
Title
Data-Driven Student Clusters Based on Online Learning Behavior in a Flipped Classroom with an Intelligent Tutoring System
Authors
Ines Šarić
Ani Grubišić
Ljiljana Šerić
Timothy J. Robinson
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-22244-4_10

Premium Partner