Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

14-09-2022

Data-Prediction Model Based on Stepwise Data Regression Method in Wireless Sensor Network

Authors: Khushboo Jain, Akansha Singh

Published in: Wireless Personal Communications

Login to get access
share
SHARE

Abstract

As the popularity of wireless sensor networks (WSNs) is rapidly expanding across businesses and industries, we must make everything around us more intelligent and informative. In such networks, sensor nodes (SNs) serve as the WSN's eyes, obtaining data about various environments and conditions, while the base station (or Sink) serves as the WSN's brain, analyzing the acquired data and making decisions. However, on the one hand, the large volume of data collected by the SNs consumes the SNs' limited energy and complicates data analysis at the sink for decision making. In this article, we present a data prediction model based on the stepwise data regression method for handling large amounts of data obtained by cluster-based WSNs. The prediction model is built stepwise data regression method that is implemented at both tiers of each cluster: cluster member nodes and Cluster Heads; and is compatible with both homogeneous and heterogeneous network setups. In intracluster data transmissions, the proposed data prediction model employs a two-buffer stepwise data regression method to synchronize the sensed and predicted data intending to reduce the cumulative errors from continuous predictions. The performance of the proposed work is examined by extensive simulations on real sensor data collected from several applications and is also compared with CPMDC (Diwakaran et al. in J Supercomput 75:3302–3316, 2019) and TDPA (Sinha and Lobiyal in Wirel Pers Commun 84:1325–1343, 2015) models. The proposed model proved to be very energy efficient, with improved data prediction accuracy, increased network lifetime, and more successful data predictions while sustaining an acceptable data accuracy, and improved network lifetime when compared with CPMDC (Diwakaran et al. 2019) and TDPA (Sinha and Lobiyal 2015) models. respectively.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. CrossRef Lazarescu, M. T. (2013). Design of a WSN platform for long-term environmental monitoring for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(1), 45–54. CrossRef
2.
go back to reference Jain, K., & Kumar, A. (2019). An optimal RSSI-based cluster-head selection for sensor networks. International Journal of Adaptive and Innovative Systems, 2(4), 349–361. CrossRef Jain, K., & Kumar, A. (2019). An optimal RSSI-based cluster-head selection for sensor networks. International Journal of Adaptive and Innovative Systems, 2(4), 349–361. CrossRef
3.
go back to reference Agarwal, A., Jain, K., & Dev, A. (2022). BFL: A buffer based linear filtration method for data aggregation in wireless sensor networks. International Journal of Information Technology, 14(3), 1445–1454. CrossRef Agarwal, A., Jain, K., & Dev, A. (2022). BFL: A buffer based linear filtration method for data aggregation in wireless sensor networks. International Journal of Information Technology, 14(3), 1445–1454. CrossRef
4.
go back to reference Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122. CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122. CrossRef
5.
go back to reference Jain, K., & Kumar, A. (2021). A lightweight data transmission reduction method based on a dual prediction technique for sensor networks. Transactions on Emerging Telecommunications Technologies, 32(11), e4345. CrossRef Jain, K., & Kumar, A. (2021). A lightweight data transmission reduction method based on a dual prediction technique for sensor networks. Transactions on Emerging Telecommunications Technologies, 32(11), e4345. CrossRef
6.
go back to reference Agarwal, A., Dev, A., & Jain, K. (2020). Prolonging sensor network lifetime by using energy-efficient cluster-based scheduling. International Journal of Scientific & Technology Research, 9(4). ISSN 2277-8616. Agarwal, A., Dev, A., & Jain, K. (2020). Prolonging sensor network lifetime by using energy-efficient cluster-based scheduling. International Journal of Scientific & Technology Research, 9(4). ISSN 2277-8616.
7.
go back to reference Jain, K., Mehra, P. S., Dwivedi, A. K., & Agarwal, A. (2022). SCADA: scalable cluster-based data aggregation technique for improving network lifetime of wireless sensor networks.  The Journal of Supercomputing, 78(11), 1–29. Jain, K., Mehra, P. S., Dwivedi, A. K., & Agarwal, A. (2022). SCADA: scalable cluster-based data aggregation technique for improving network lifetime of wireless sensor networks.  The Journal of Supercomputing, 78(11), 1–29.
8.
go back to reference Khan, M. N., Rahman, H. U., Almaiah, M. A., Khan, M. Z., Khan, A., Raza, M., & Khan, R. (2020). Improving energy efficiency with content-based adaptive and dynamic scheduling in wireless sensor networks. IEEE Access, 8, 176495–176520. CrossRef Khan, M. N., Rahman, H. U., Almaiah, M. A., Khan, M. Z., Khan, A., Raza, M., & Khan, R. (2020). Improving energy efficiency with content-based adaptive and dynamic scheduling in wireless sensor networks. IEEE Access, 8, 176495–176520. CrossRef
9.
go back to reference Jain, K., Agarwal, A., & Kumar, A. (2021). A novel data prediction technique based on correlation for data reduction in sensor networks. In  Proceedings of International Conference on Artificial Intelligence and Applications (pp. 595–606). Singapore: Springer. Jain, K., Agarwal, A., & Kumar, A. (2021). A novel data prediction technique based on correlation for data reduction in sensor networks. In  Proceedings of International Conference on Artificial Intelligence and Applications (pp. 595–606). Singapore: Springer.
10.
go back to reference Jain, K., Agarwal, A., & Abraham, A. (2022). A combinational data prediction model for data transmission reduction in wireless sensor networks. IEEE Access, 10, 53468–53480. CrossRef Jain, K., Agarwal, A., & Abraham, A. (2022). A combinational data prediction model for data transmission reduction in wireless sensor networks. IEEE Access, 10, 53468–53480. CrossRef
11.
go back to reference Khalaf, O. I., & Abdulsahib, G. M. (2020). Energy efficient routing and reliable data transmission protocol in WSN. International Journal of Advances in Soft Computing and its Applications, 12(3), 45–53. Khalaf, O. I., & Abdulsahib, G. M. (2020). Energy efficient routing and reliable data transmission protocol in WSN. International Journal of Advances in Soft Computing and its Applications, 12(3), 45–53.
12.
go back to reference Faheem, M., Butt, R. A., Raza, B., Ashraf, M. W., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient and reliable data gathering using internet of software-defined mobile sinks for WSNs-based smart grid applications. Computer Standards & Interfaces, 66, 103341. CrossRef Faheem, M., Butt, R. A., Raza, B., Ashraf, M. W., Ngadi, M. A., & Gungor, V. C. (2019). Energy efficient and reliable data gathering using internet of software-defined mobile sinks for WSNs-based smart grid applications. Computer Standards & Interfaces, 66, 103341. CrossRef
13.
go back to reference Chandnani, N., & Khairnar, C. N. (2022). An analysis of architecture, framework, security and challenging aspects for data aggregation and routing techniques in IoT WSNs. Theoretical Computer Science, 929, 95–113. MathSciNetMATHCrossRef Chandnani, N., & Khairnar, C. N. (2022). An analysis of architecture, framework, security and challenging aspects for data aggregation and routing techniques in IoT WSNs. Theoretical Computer Science, 929, 95–113. MathSciNetMATHCrossRef
14.
go back to reference Yun, W. K., & Yoo, S. J. (2021). Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access, 9, 10737–10750. CrossRef Yun, W. K., & Yoo, S. J. (2021). Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access, 9, 10737–10750. CrossRef
15.
go back to reference Jain, K., & Kumar, A. (2022). An innovative framework for balanced cluster‐based data aggregation in sensor networks. International Journal of Communication Systems, 35(13), e5238. Jain, K., & Kumar, A. (2022). An innovative framework for balanced cluster‐based data aggregation in sensor networks. International Journal of Communication Systems, 35(13), e5238.
16.
go back to reference Issariyakul, T., & Hossain, E. (2009). Introduction to network simulator 2 (NS2). In  Introduction to network simulator NS2 (pp. 1–18). Boston, MA: Springer. Issariyakul, T., & Hossain, E. (2009). Introduction to network simulator 2 (NS2). In  Introduction to network simulator NS2 (pp. 1–18). Boston, MA: Springer.
17.
go back to reference Madden S. (2004). Intel lab data. web page, intel. Madden S. (2004). Intel lab data. web page, intel.
18.
go back to reference Liang, Y., & Li, Y. (2014). An efficient and robust data compression algorithm in wireless sensor networks. IEEE Communications Letters, 18(3), 439–442. CrossRef Liang, Y., & Li, Y. (2014). An efficient and robust data compression algorithm in wireless sensor networks. IEEE Communications Letters, 18(3), 439–442. CrossRef
19.
go back to reference Harb, H., Makhoul, A., & Couturier, R. (2015). An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks. IEEE Sensors Journal, 15(10), 5483–5493. CrossRef Harb, H., Makhoul, A., & Couturier, R. (2015). An enhanced K-means and ANOVA-based clustering approach for similarity aggregation in underwater wireless sensor networks. IEEE Sensors Journal, 15(10), 5483–5493. CrossRef
20.
go back to reference Dhimal, S., & Sharma, K. (2015). Energy conservation in wireless sensor networks by exploiting inter-node data similarity metrics. International Journal of Energy, Information and Communications, 6(2), 23–32. CrossRef Dhimal, S., & Sharma, K. (2015). Energy conservation in wireless sensor networks by exploiting inter-node data similarity metrics. International Journal of Energy, Information and Communications, 6(2), 23–32. CrossRef
21.
go back to reference Harb, H., Makhoul, A., Laiymani, D., Bazzi, O., & Jaber, A. (2015). An analysis of variance-based methods for data aggregation in periodic sensor networks. In  Transactions on large-scale data-and knowledge-centered systems (Vol. 22, pp. 165–183). Berlin, Heidelberg: Springer. Harb, H., Makhoul, A., Laiymani, D., Bazzi, O., & Jaber, A. (2015). An analysis of variance-based methods for data aggregation in periodic sensor networks. In  Transactions on large-scale data-and knowledge-centered systems (Vol. 22, pp. 165–183). Berlin, Heidelberg: Springer.
22.
go back to reference Sinha, A., & Lobiyal, D. K. (2015). Prediction models for energy efficient data aggregation in wireless sensor network. Wireless Personal Communications, 84(2), 1325–1343. CrossRef Sinha, A., & Lobiyal, D. K. (2015). Prediction models for energy efficient data aggregation in wireless sensor network. Wireless Personal Communications, 84(2), 1325–1343. CrossRef
23.
go back to reference Wu, M., Tan, L., & Xiong, N. (2016). Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Information Sciences, 329, 800–818. CrossRef Wu, M., Tan, L., & Xiong, N. (2016). Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Information Sciences, 329, 800–818. CrossRef
24.
go back to reference Harb, H., Makhoul, A., & Abou Jaoude, C. (2018). A real-time massive data processing technique for densely distributed sensor networks. IEEE Access, 6, 56551–56561. CrossRef Harb, H., Makhoul, A., & Abou Jaoude, C. (2018). A real-time massive data processing technique for densely distributed sensor networks. IEEE Access, 6, 56551–56561. CrossRef
25.
go back to reference Rida, M., Makhoul, A., Harb, H., Laiymani, D., & Barhamgi, M. (2019). EK-means: A new clustering approach for datasets classification in sensor networks. Ad Hoc Networks, 84, 158–169. CrossRef Rida, M., Makhoul, A., Harb, H., Laiymani, D., & Barhamgi, M. (2019). EK-means: A new clustering approach for datasets classification in sensor networks. Ad Hoc Networks, 84, 158–169. CrossRef
26.
go back to reference Diwakaran, S., Perumal, B., & Vimala Devi, K. (2019). A cluster prediction model-based data collection for energy efficient wireless sensor network. The Journal of Supercomputing, 75(6), 3302–3316. CrossRef Diwakaran, S., Perumal, B., & Vimala Devi, K. (2019). A cluster prediction model-based data collection for energy efficient wireless sensor network. The Journal of Supercomputing, 75(6), 3302–3316. CrossRef
27.
go back to reference Harb, H., Makhoul, A., Jaber, A., & Tawbi, S. (2019). Energy efficient data collection in periodic sensor networks using spatio-temporal node correlation. International Journal of Sensor Networks, 29(1), 1–15. CrossRef Harb, H., Makhoul, A., Jaber, A., & Tawbi, S. (2019). Energy efficient data collection in periodic sensor networks using spatio-temporal node correlation. International Journal of Sensor Networks, 29(1), 1–15. CrossRef
28.
go back to reference Al-Qurabat, A. K. M., & Idrees, A. K. (2019). Two level data aggregation protocol for prolonging lifetime of periodic sensor networks. Wireless Networks, 25(6), 3623–3641. CrossRef Al-Qurabat, A. K. M., & Idrees, A. K. (2019). Two level data aggregation protocol for prolonging lifetime of periodic sensor networks. Wireless Networks, 25(6), 3623–3641. CrossRef
29.
go back to reference Idrees, A. K., Alhussaini, R., & Salman, M. A. (2020). Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs.  Personal and Ubiquitous Computing, 1–20. Idrees, A. K., Alhussaini, R., & Salman, M. A. (2020). Energy-efficient two-layer data transmission reduction protocol in periodic sensor networks of IoTs.  Personal and Ubiquitous Computing, 1–20.
30.
go back to reference Jain, K., & Kumar, A. (2020). Energy-efficient data-aggregation technique for correlated spatial and temporal data in cluster-based sensor networks. International Journal of Business Data Communications and Networking (IJBDCN), 16(2), 53–68. CrossRef Jain, K., & Kumar, A. (2020). Energy-efficient data-aggregation technique for correlated spatial and temporal data in cluster-based sensor networks. International Journal of Business Data Communications and Networking (IJBDCN), 16(2), 53–68. CrossRef
31.
go back to reference Jain, K., & Kumar, A. (2020). An energy-efficient prediction model for data aggregation in sensor network. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5205–5216. CrossRef Jain, K., & Kumar, A. (2020). An energy-efficient prediction model for data aggregation in sensor network. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5205–5216. CrossRef
32.
go back to reference Al-Qurabat, A. K. M., & Kadhum Idrees, A. (2020). Data gathering and aggregation with selective transmission technique to optimize the lifetime of Internet of Things networks. International Journal of Communication Systems, 33(11), e4408. CrossRef Al-Qurabat, A. K. M., & Kadhum Idrees, A. (2020). Data gathering and aggregation with selective transmission technique to optimize the lifetime of Internet of Things networks. International Journal of Communication Systems, 33(11), e4408. CrossRef
33.
go back to reference Jain, K., & Kumar, A. (2021). ST-DAM: Exploiting spatial and temporal correlation for energy-efficient data aggregation method in heterogeneous WSN. International Journal of Wireless and Mobile Computing, 21(3), 285–294. MathSciNetCrossRef Jain, K., & Kumar, A. (2021). ST-DAM: Exploiting spatial and temporal correlation for energy-efficient data aggregation method in heterogeneous WSN. International Journal of Wireless and Mobile Computing, 21(3), 285–294. MathSciNetCrossRef
34.
go back to reference Agarwal, A., Jain, K., & Dev, A. (2021). Modeling and analysis of data prediction technique based on linear regression model (DP-LRM) for cluster-based sensor networks. International Journal of Ambient Computing and Intelligence (IJACI), 12(4), 98–117. CrossRef Agarwal, A., Jain, K., & Dev, A. (2021). Modeling and analysis of data prediction technique based on linear regression model (DP-LRM) for cluster-based sensor networks. International Journal of Ambient Computing and Intelligence (IJACI), 12(4), 98–117. CrossRef
35.
go back to reference Gupta, M., & Sinha, A. (2021). Distributed temporal data prediction model for wireless sensor network. Wireless Personal Communications, 119(4), 3699–3717. CrossRef Gupta, M., & Sinha, A. (2021). Distributed temporal data prediction model for wireless sensor network. Wireless Personal Communications, 119(4), 3699–3717. CrossRef
36.
go back to reference Jain, K., & Singh, A. (2022). A two vector data-prediction model for energy-efficient data aggregation in wireless sensor network. Concurrency and Computation: Practice and Experience, 34(11), e6840. CrossRef Jain, K., & Singh, A. (2022). A two vector data-prediction model for energy-efficient data aggregation in wireless sensor network. Concurrency and Computation: Practice and Experience, 34(11), e6840. CrossRef
37.
go back to reference Shagari, N. M., Salleh, R. B., Ahmedy, I., Idris, M. Y. I., Murtaza, G., Ali, U., & Modi, S. (2022). A two-step clustering to minimize redundant transmission in wireless sensor network using sleep-awake mechanism.  Wireless Networks, 1–28. Shagari, N. M., Salleh, R. B., Ahmedy, I., Idris, M. Y. I., Murtaza, G., Ali, U., & Modi, S. (2022). A two-step clustering to minimize redundant transmission in wireless sensor network using sleep-awake mechanism.  Wireless Networks, 1–28.
38.
go back to reference Shafique, A., Asad, M., Aslam, M., Shaukat, S., & Cao, G. (2022). Multi-hop similarity-based-clustering framework for IoT-Oriented Software-Defined wireless sensor networks. IET Wireless Sensor Systems, 12(2), 67–80. CrossRef Shafique, A., Asad, M., Aslam, M., Shaukat, S., & Cao, G. (2022). Multi-hop similarity-based-clustering framework for IoT-Oriented Software-Defined wireless sensor networks. IET Wireless Sensor Systems, 12(2), 67–80. CrossRef
39.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670. CrossRef
Metadata
Title
Data-Prediction Model Based on Stepwise Data Regression Method in Wireless Sensor Network
Authors
Khushboo Jain
Akansha Singh
Publication date
14-09-2022
Publisher
Springer US
Published in
Wireless Personal Communications
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-10034-3