Skip to main content
Top

2017 | OriginalPaper | Chapter

9. Data Storage Devices

Author : Gurinder Kaur Ahluwalia, Ph.D

Published in: Applications of Chalcogenides: S, Se, and Te

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tellurium based materials are used in present-day commercial optical memory devices and are potential candidates for future solid-state data storage devices. The mainstream memory technologies and systems include solid-state memory, hard disk drive, and optical disk. Each technology has its own special market and application although there is some overlap. Solid-state memories, which have high speed and compact size, are mainly used as primary (internal) memories, and magnetic and optical data storage devices are typically used as secondary devices for computer systems. In connection with the improvement of digital computers, extensive research work is being done to increase the capacity and speed of their memory devices. The phase change memory has been devoted to binary activity, which is the basic mechanism for data storage in optical and electrical memory devices. The strategy is always to make the spots/marks smaller and the density much higher. This chapter presents some of the important contributions in terms of materials development and device fabrication for data storage devices.
Major Parameters To Be Addressed for PCM Devices Include:
  • Switching speed
  • Cyclability endurance
  • Data retention time
  • Storage densitySize scaling

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Moller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 161–169 (2003)CrossRef S. Moller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, A polymer/semiconductor write-once read-many-times memory. Nature 426, 161–169 (2003)CrossRef
2.
go back to reference T. Matsunaga, N. Yamada, Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43, 4704–4712 (2004)CrossRef T. Matsunaga, N. Yamada, Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks. Jpn. J. Appl. Phys. 43, 4704–4712 (2004)CrossRef
3.
go back to reference a) Meinders, E. R., Mijiritskii, A. V., van Pieterson, L., Wuttig, M. Optical Data Storage, Vol. 4 (Philips Research Book Series, Springer, 2006). b) Volker L. Deringer, Richard Dronskowski, M. Wuttig, Microscopic complexity in phase change materials and its role for applications, Adv. Funct. Mater. 25, 6343–6359, 2015, doi:10.1002/adfm.201500826 a) Meinders, E. R., Mijiritskii, A. V., van Pieterson, L., Wuttig, M. Optical Data Storage, Vol. 4 (Philips Research Book Series, Springer, 2006). b) Volker L. Deringer, Richard Dronskowski, M. Wuttig, Microscopic complexity in phase change materials and its role for applications, Adv. Funct. Mater. 25, 6343–6359, 2015, doi:10.​1002/​adfm.​201500826
6.
go back to reference T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770 (2000)CrossRef T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, T. Kozaki, Jpn. J. Appl. Phys. 39, 770 (2000)CrossRef
7.
go back to reference T. Ohta, S.R. Ovshinsky, in Photo-induced Metastability in Amorphous Semiconductors, ed. by A.V. Kolobov (Wiley-VCH, Berlin, 2003) pp. 310–326 T. Ohta, S.R. Ovshinsky, in Photo-induced Metastability in Amorphous Semiconductors, ed. by A.V. Kolobov (Wiley-VCH, Berlin, 2003) pp. 310–326
8.
go back to reference A.V. Kolobov, P. Fons, I.F. Anatoly, L.A. Alexei, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)CrossRef A.V. Kolobov, P. Fons, I.F. Anatoly, L.A. Alexei, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)CrossRef
9.
go back to reference S.R. Elliott, in Materials Science and Technology, vol. 9, ed. by J. Zarzycki (VCH, Weinheim, 1991), p. 375 S.R. Elliott, in Materials Science and Technology, vol. 9, ed. by J. Zarzycki (VCH, Weinheim, 1991), p. 375
10.
go back to reference N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid Phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disc memory. J. Appl. Phys. 69, 2849–2856 (1991)CrossRef N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid Phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disc memory. J. Appl. Phys. 69, 2849–2856 (1991)CrossRef
11.
go back to reference H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 31, 461–465 (1992)CrossRef H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 31, 461–465 (1992)CrossRef
12.
go back to reference K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced metastability in amorphous semiconductors and insulators. Adv. Phys. 44(6), 475–588 (1995)CrossRef K. Shimakawa, A. Kolobov, S.R. Elliott, Photoinduced metastability in amorphous semiconductors and insulators. Adv. Phys. 44(6), 475–588 (1995)CrossRef
13.
go back to reference H. Nishihar, M. Haruna, T. Suhara, in Optical & Electro-Optical Engineering Series, vol. 215, ed. by R.E. Fisher, W.E. Smith (McGraw Hill, New York, 1989), p. 151 H. Nishihar, M. Haruna, T. Suhara, in Optical & Electro-Optical Engineering Series, vol. 215, ed. by R.E. Fisher, W.E. Smith (McGraw Hill, New York, 1989), p. 151
14.
go back to reference C. Bichara, J.-Y. Raty, J.-P. Gaspard, Structure and bonding in liquid selenium. Phys. Rev. B 53, 206–211 (1996)CrossRef C. Bichara, J.-Y. Raty, J.-P. Gaspard, Structure and bonding in liquid selenium. Phys. Rev. B 53, 206–211 (1996)CrossRef
15.
go back to reference H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 25, 1992 (1991) H. Iwasaki, Y. Ide, M. Harigaya, Y. Kageyama, I. Fujimura, Jpn. J. Appl. Phys. 25, 1992 (1991)
16.
go back to reference T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata, R. Kojima, From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011)CrossRef T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata, R. Kojima, From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nat. Mater. 10, 129–134 (2011)CrossRef
17.
go back to reference M.H.R. Lankhorst, L. van Pieterson, M. van Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 1 42, 863 (2003)CrossRef M.H.R. Lankhorst, L. van Pieterson, M. van Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 1 42, 863 (2003)CrossRef
18.
19.
go back to reference L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, Phase-change recording materials with a growth-dominated crystallization mechanism: “A materials overview”. J. Appl. Phys. 97, 083520 (2005)CrossRef L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, Phase-change recording materials with a growth-dominated crystallization mechanism: “A materials overview”. J. Appl. Phys. 97, 083520 (2005)CrossRef
21.
go back to reference J.H. Coombs, A.P.J.M. Jongelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4906 (1995)CrossRef J.H. Coombs, A.P.J.M. Jongelis, W. van Es-Spiekman, B.A.J. Jacobs, J. Appl. Phys. 78, 4906 (1995)CrossRef
22.
go back to reference C. Trappe, B. Béchevet, B. Hyot, O. Winkler, S. Facsko, H. Kurtz, Jpn. J. Appl. Phys. 1 39, 766 (2000)CrossRef C. Trappe, B. Béchevet, B. Hyot, O. Winkler, S. Facsko, H. Kurtz, Jpn. J. Appl. Phys. 1 39, 766 (2000)CrossRef
23.
go back to reference T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata, Inorg. Chem. 45, 2235 (2006)CrossRef T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata, Inorg. Chem. 45, 2235 (2006)CrossRef
24.
go back to reference I.I. Petrov, R.M. Imamov, Z.G. Pinsker, Electronographic determination of the structures of Ge2Sb2Te5 and GeSb4Te7. Sov. Phys. Cryst. 13, 339–344 (1968) I.I. Petrov, R.M. Imamov, Z.G. Pinsker, Electronographic determination of the structures of Ge2Sb2Te5 and GeSb4Te7. Sov. Phys. Cryst. 13, 339–344 (1968)
25.
go back to reference J. Gonzalez-Hernandez et al., Free carrier absorption in the Ge: Sb: Te system. Solid State Commun. 95, 593–596 (1995)CrossRef J. Gonzalez-Hernandez et al., Free carrier absorption in the Ge: Sb: Te system. Solid State Commun. 95, 593–596 (1995)CrossRef
26.
go back to reference J. Tominaga et al., Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411–415 (2004)CrossRef J. Tominaga et al., Ferroelectric catastrophe: beyond nanometer-scale optical resolution. Nanotechnology 15, 411–415 (2004)CrossRef
27.
go back to reference S. Yanlin, D. Zhu (eds.), High Density Data Storage-Principle, Technology, and Materials (World Scientific, Singapore, 2009) S. Yanlin, D. Zhu (eds.), High Density Data Storage-Principle, Technology, and Materials (World Scientific, Singapore, 2009)
28.
go back to reference A 1013 bit mass memory reads and writes with laser. Comput. Des. 6(3), 38–39 (1967) A 1013 bit mass memory reads and writes with laser. Comput. Des. 6(3), 38–39 (1967)
29.
go back to reference Hot spot storage, Electronics 40, 50 (1967) Hot spot storage, Electronics 40, 50 (1967)
30.
go back to reference More for your memories with ceramics, Des. News 22(25), 10–11 (1967) More for your memories with ceramics, Des. News 22(25), 10–11 (1967)
31.
go back to reference P.J. van Heerden, A new optical method of storing and retrieving information. Appl. Opt. 2(4), 387–392 (1963)CrossRef P.J. van Heerden, A new optical method of storing and retrieving information. Appl. Opt. 2(4), 387–392 (1963)CrossRef
32.
go back to reference H. Peek, J. Bergmans, J. van Haaren, F. Toolenaar, S. Stan, Origins and successors of the compact disc—contributions of Philips to optical storage, in Philips Research Book Series, ed. by F. Toolenaar, vol. 11 (Springer, The Netherlands, 2009) H. Peek, J. Bergmans, J. van Haaren, F. Toolenaar, S. Stan, Origins and successors of the compact disc—contributions of Philips to optical storage, in Philips Research Book Series, ed. by F. Toolenaar, vol. 11 (Springer, The Netherlands, 2009)
34.
go back to reference G. Hakkatoshi, K. Nitta, K. Itaya, Y. Nishikawa, M. Ishikawa, M. Okajima, High power InGaAlP laser diodes for high density optical recording. Jpn. J. Appl. Phys. 1 31(2B), 501–507 (1992) G. Hakkatoshi, K. Nitta, K. Itaya, Y. Nishikawa, M. Ishikawa, M. Okajima, High power InGaAlP laser diodes for high density optical recording. Jpn. J. Appl. Phys. 1 31(2B), 501–507 (1992)
35.
go back to reference K. Uchino, K. Takada, T. Ohno, H. Yoshida, Y. Kobayashi, High-density pulse width modulation recording and rewritable capability in GeSbTe phase-change system using visible laser beam at low linear velocity. Jpn. J. Appl. Phys. 1 32(11B), 5354–5360 (1993)CrossRef K. Uchino, K. Takada, T. Ohno, H. Yoshida, Y. Kobayashi, High-density pulse width modulation recording and rewritable capability in GeSbTe phase-change system using visible laser beam at low linear velocity. Jpn. J. Appl. Phys. 1 32(11B), 5354–5360 (1993)CrossRef
36.
go back to reference M. Shinotsuka, T. Shibaguchi, M. Abe, Y. Ide, Potentiality of the Ag-In-Sb-Te phase change recording material for high density erasable optical disc. Jpn. J. Appl. Phys. 1 36(1B), 536–538 (1997)CrossRef M. Shinotsuka, T. Shibaguchi, M. Abe, Y. Ide, Potentiality of the Ag-In-Sb-Te phase change recording material for high density erasable optical disc. Jpn. J. Appl. Phys. 1 36(1B), 536–538 (1997)CrossRef
37.
go back to reference K. Nagata, T. Saimi, S. Furukawa, K. Nishiuchi, N. Yamada, N. Akahira, 4.7 GB phase-change optical disk for an authoring system of digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2236–2240 (1998)CrossRef K. Nagata, T. Saimi, S. Furukawa, K. Nishiuchi, N. Yamada, N. Akahira, 4.7 GB phase-change optical disk for an authoring system of digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2236–2240 (1998)CrossRef
38.
go back to reference E. Muramatsu, A. Yamaguchi, K. Horikawa, M. Kato, S. Taniguchi, S. Jinno, M. Yamaguchi, H. Kudo, A. Inoue, The new rewritable disc system for digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2257–2258 (1998)CrossRef E. Muramatsu, A. Yamaguchi, K. Horikawa, M. Kato, S. Taniguchi, S. Jinno, M. Yamaguchi, H. Kudo, A. Inoue, The new rewritable disc system for digital versatile disc. Jpn. J. Appl. Phys. 1 37(4B), 2257–2258 (1998)CrossRef
39.
go back to reference M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, 4.7 GB phase change optical disc with in-groove recording. Jpn. J. Appl. Phys. 1 38(3B), 1806–1810 (1999)CrossRef M. Yamaguchi, T. Togashi, S. Jinno, H. Kudo, E. Muramatsu, S. Taniguchi, A. Inoue, 4.7 GB phase change optical disc with in-groove recording. Jpn. J. Appl. Phys. 1 38(3B), 1806–1810 (1999)CrossRef
40.
go back to reference M. Yoshida, Y. Shimoda, H. Ishii, A. Inoue, 4.7 Gbyte Re-writable disc system based on DVD-R system. IEEE Trans. Consum. Electron. 45(4), 1270–1276 (1999)CrossRef M. Yoshida, Y. Shimoda, H. Ishii, A. Inoue, 4.7 Gbyte Re-writable disc system based on DVD-R system. IEEE Trans. Consum. Electron. 45(4), 1270–1276 (1999)CrossRef
41.
go back to reference DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 2X Speed DVD-RW. Revision 1.0, 2002 DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 2X Speed DVD-RW. Revision 1.0, 2002
42.
go back to reference DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 4X Speed DVD-RW. Revision 2.0, 2003 DVD Forum. DVD Specifications for Re-Recordable Disc (DVD-RW). Optional Specifications. 4X Speed DVD-RW. Revision 2.0, 2003
43.
go back to reference DVD Forum. DVD Specifications for Rewritable Disc. DVD-RAM (4.7 Gbyte). Part 1: Physical Specifications. Version-up Information (2.1 to 2.2), 2004 DVD Forum. DVD Specifications for Rewritable Disc. DVD-RAM (4.7 Gbyte). Part 1: Physical Specifications. Version-up Information (2.1 to 2.2), 2004
44.
go back to reference ECMA-338. 80 nm (1, 46 Gbytes per side) and 120 nm (4, 70 Gbytes per side) DVD Re-recordable Disk (DVD-RW), 2002 ECMA-338. 80 nm (1, 46 Gbytes per side) and 120 nm (4, 70 Gbytes per side) DVD Re-recordable Disk (DVD-RW), 2002
46.
47.
go back to reference N. Yamada, Development of Materials for Third Generation Optical Storage Media, in Phase Change Materials, eds. by S. Raoux, M. Wuttig. (Springer, New York, 2008), pp. 199–226 N. Yamada, Development of Materials for Third Generation Optical Storage Media, in Phase Change Materials, eds. by S. Raoux, M. Wuttig. (Springer, New York, 2008), pp. 199–226
49.
51.
go back to reference L. Dhar, K. Cortis, T. Facke, Nature Photonics, Technol. Focus 2, 403–411 (2008)CrossRef L. Dhar, K. Cortis, T. Facke, Nature Photonics, Technol. Focus 2, 403–411 (2008)CrossRef
52.
go back to reference E. Walker, P.M. Rentzepis, Two photon technology—a new dimension. Nature Photonics, Technol. Focus 2, 406–408 (2008)CrossRef E. Walker, P.M. Rentzepis, Two photon technology—a new dimension. Nature Photonics, Technol. Focus 2, 406–408 (2008)CrossRef
53.
go back to reference G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A: Pure Appl. Opt. 11, 049801 (2009)CrossRef G. Della Valle, R. Osellame, P. Laporta, Micromachining of photonic devices by femtosecond laser pulses. J. Opt. A: Pure Appl. Opt. 11, 049801 (2009)CrossRef
54.
go back to reference X. Li, C. Bullen, J.W.M. Chon, R.A. Evans, M. Gu, Appl. Phys. Lett. 90, 161116 (2007)CrossRef X. Li, C. Bullen, J.W.M. Chon, R.A. Evans, M. Gu, Appl. Phys. Lett. 90, 161116 (2007)CrossRef
56.
go back to reference S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P.N. Prasad, P.C. Cheng, Scanning 19, 156 (1997) S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P.N. Prasad, P.C. Cheng, Scanning 19, 156 (1997)
58.
go back to reference H. Jiu, H. Tang, J. Zhou, J. Xu, Q. Zhang, H. Xing, W. Huang, A. Xia, Opt. Lett. 30, 774 (2005)CrossRef H. Jiu, H. Tang, J. Zhou, J. Xu, Q. Zhang, H. Xing, W. Huang, A. Xia, Opt. Lett. 30, 774 (2005)CrossRef
60.
go back to reference L. Canioni, M. Bellec, A. Royon, B. Bousquet, T. Cardinal, Three-dimensional optical data storage using third harmonic generation in silver zinc phosphate glass. Opt. Lett. 33(4), 360–362 (2008)CrossRef L. Canioni, M. Bellec, A. Royon, B. Bousquet, T. Cardinal, Three-dimensional optical data storage using third harmonic generation in silver zinc phosphate glass. Opt. Lett. 33(4), 360–362 (2008)CrossRef
62.
go back to reference E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, New Series 257(5067), 189–195 (1992) E. Betzig, J.K. Trautman, Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science, New Series 257(5067), 189–195 (1992)
63.
go back to reference J.W. Goodman, Introduction to fourier optics (McGraw-Hill, New York, 1968) J.W. Goodman, Introduction to fourier optics (McGraw-Hill, New York, 1968)
66.
go back to reference D. McMullan, The near-field concept has been independently formulated by several researchers, but E. H. Synge’s work was first brought to the attention of the near field community. Proc. R. Microsc. Soc. 25, 127 (1990) D. McMullan, The near-field concept has been independently formulated by several researchers, but E. H. Synge’s work was first brought to the attention of the near field community. Proc. R. Microsc. Soc. 25, 127 (1990)
68.
69.
go back to reference M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, A. Nakaoki, Jpn. J. Appl. Phys. 42, 1101 (2003)CrossRef M. Shinoda, K. Saito, T. Kondo, T. Ishimoto, A. Nakaoki, Jpn. J. Appl. Phys. 42, 1101 (2003)CrossRef
71.
72.
go back to reference B. Qiao, J. Feng, Y. Lai, Y. Cai, Y. Lin, T. Tang, B. Cai, B. Chen, Semicond. Sci. Technol. 21, 1073–1076 (2006)CrossRef B. Qiao, J. Feng, Y. Lai, Y. Cai, Y. Lin, T. Tang, B. Cai, B. Chen, Semicond. Sci. Technol. 21, 1073–1076 (2006)CrossRef
73.
go back to reference T. Morikawa, K. Kurotsuchi, M. Kinoshita, N. Matsuzaki, Y. Matsui, Y. Fujisaki, S. Hanzawa, A. Kotabe, M. Terao, H. Moriya, T. Iwasaki, M. Matsuoka, F. Nitta, M. Moniwa, T. Koga, N. Takaura, Doped In-Ge-Te phase change memory featuring stable operation and good data retention. IEDM Tech. Dig. 12.3, 307–310 (2007) T. Morikawa, K. Kurotsuchi, M. Kinoshita, N. Matsuzaki, Y. Matsui, Y. Fujisaki, S. Hanzawa, A. Kotabe, M. Terao, H. Moriya, T. Iwasaki, M. Matsuoka, F. Nitta, M. Moniwa, T. Koga, N. Takaura, Doped In-Ge-Te phase change memory featuring stable operation and good data retention. IEDM Tech. Dig. 12.3, 307–310 (2007)
76.
go back to reference Q.F. Wang, L. Shi, S.M. Huang, X.S. Miao, K.P. Wong, T.C. Chong, Dynamics of ultrafast crystallization in As-deposited Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43, 5006–5008 (2004) Q.F. Wang, L. Shi, S.M. Huang, X.S. Miao, K.P. Wong, T.C. Chong, Dynamics of ultrafast crystallization in As-deposited Ge2Sb2Te5 films. Jpn. J. Appl. Phys. 43, 5006–5008 (2004)
77.
go back to reference M. Mansuripur, Rewritable optical disk technologies. Proc. SPIE 4109, 162–176 (2000)CrossRef M. Mansuripur, Rewritable optical disk technologies. Proc. SPIE 4109, 162–176 (2000)CrossRef
78.
go back to reference N. Yamada, Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996)CrossRef N. Yamada, Erasable phase-change optical materials. Mater. Res. Soc. Bull. 21, 48–50 (1996)CrossRef
79.
go back to reference M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Low cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005)CrossRef M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Low cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005)CrossRef
80.
go back to reference S. Hudgens, B. Johnson, Overview of phase change chalcogenide non-volatile memory technology. Mater. Res. Soc. Bull. 29, 829–832 (2004)CrossRef S. Hudgens, B. Johnson, Overview of phase change chalcogenide non-volatile memory technology. Mater. Res. Soc. Bull. 29, 829–832 (2004)CrossRef
81.
go back to reference S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.K. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Symp. VLSI Tech. Dig. 2005, 96–97 (2005) S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.K. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.-I. Chung, J.T. Moon, B.I. Ryu, Symp. VLSI Tech. Dig. 2005, 96–97 (2005)
82.
go back to reference E.A. Joseph, T.D. Happ, S.H. Chen, S. Raoux, C.F. Chen, M. Breitwisch, A.G. Schrott, S. Zaidi, R. Dasaka, B.Yee, Y. Zhu, R. Bergmann, H.L. Lung, and C. Lam, in International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA (2008), pp. 142–143 E.A. Joseph, T.D. Happ, S.H. Chen, S. Raoux, C.F. Chen, M. Breitwisch, A.G. Schrott, S. Zaidi, R. Dasaka, B.Yee, Y. Zhu, R. Bergmann, H.L. Lung, and C. Lam, in International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA (2008), pp. 142–143
83.
go back to reference D.J. Milliron, D.B. Mitzi, M. Copel, C.E. Murray, Solution processed metal chalcogenide films for p-type transistors. Chem. Mater. 18, 587–590 (2006)CrossRef D.J. Milliron, D.B. Mitzi, M. Copel, C.E. Murray, Solution processed metal chalcogenide films for p-type transistors. Chem. Mater. 18, 587–590 (2006)CrossRef
85.
go back to reference D.J. Frank et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)CrossRef D.J. Frank et al., Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)CrossRef
86.
go back to reference K.K. Likharev, Electronics below 10 mm, in Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowski (Elsevier, Amsterdam, 2003), pp. 27–68CrossRef K.K. Likharev, Electronics below 10 mm, in Nano and Giga Challenges in Microelectronics, ed. by J. Greer, A. Korkin, J. Labanowski (Elsevier, Amsterdam, 2003), pp. 27–68CrossRef
88.
go back to reference G.A. Rakuljic, V. Leyva, A. Yariv, Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt. Lett. 17, 1471 (1992) G.A. Rakuljic, V. Leyva, A. Yariv, Optical data storage by using orthogonal wavelength-multiplexed volume holograms. Opt. Lett. 17, 1471 (1992)
Metadata
Title
Data Storage Devices
Author
Gurinder Kaur Ahluwalia, Ph.D
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-41190-3_9