Skip to main content
Top

Dataset Distillation: Recent Advances of Methods and Challenges

  • 01-10-2025
  • Original Article

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article delves into the recent advancements and challenges in dataset distillation, a technique crucial for enhancing the efficiency of deep learning models. It explores various frameworks such as meta learning, parameter matching, distribution matching, and the integration of generative models. The article also highlights plug-and-play technologies that can improve the performance of dataset distillation algorithms. Additionally, it discusses the application of these methods across different data modalities, including text, time series, and video data. The article concludes by reflecting on the future directions and potential expansions of dataset distillation algorithms, emphasizing their importance in reducing data storage and training costs while maintaining model performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Title
Dataset Distillation: Recent Advances of Methods and Challenges
Authors
Muyang Li
Yong Shi
Publication date
01-10-2025
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-025-00651-7
This content is only visible if you are logged in and have the appropriate permissions.
    Image Credits
    Schmalkalden/© Schmalkalden, NTT Data/© NTT Data, Verlagsgruppe Beltz/© Verlagsgruppe Beltz, EGYM Wellpass GmbH/© EGYM Wellpass GmbH, rku.it GmbH/© rku.it GmbH, zfm/© zfm, ibo Software GmbH/© ibo Software GmbH, Lorenz GmbH/© Lorenz GmbH, Axians Infoma GmbH/© Axians Infoma GmbH, OEDIV KG/© OEDIV KG, Rundstedt & Partner GmbH/© Rundstedt & Partner GmbH