Skip to main content
Top

25-04-2024 | Research Paper

Dealing with inequality constraints in large-scale semidefinite relaxations for graph coloring and maximum clique problems

Authors: Federico Battista, Marianna De Santis

Published in: 4OR

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Semidefinite programs (SDPs) can be solved in polynomial time by interior point methods. However, when the dimension of the problem gets large, interior point methods become impractical in terms of both computational time and memory requirements. Certain first-order methods, such as Alternating Direction Methods of Multipliers (ADMMs), established as suitable algorithms to deal with large-scale SDPs and gained growing attention over the past decade. In this paper, we focus on an ADMM designed for SDPs in standard form and extend it to deal with inequalities when solving SDPs in general form. Beside numerical results on randomly generated instances, where we show that our method compares favorably with respect to the state-of-the-art solver SDPNAL+ (Yang et al. in Math Program Comput 7:331–366, 2015), we present results on instances from SDP relaxations of classical combinatorial problems such as the graph coloring problem and the maximum clique problem. Through extensive numerical experiments, we show that even an inaccurate dual solution, obtained at a generic iteration of our proposed ADMM, can represent an efficiently recovered valid bound on the optimal solution of the combinatorial problems considered, as long as an appropriate post-processing procedure is applied.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Battista F (2023) On semidefinite lift-and-project of combinatorial optimization problems. PhD thesis, Università di Roma Sapienza Battista F (2023) On semidefinite lift-and-project of combinatorial optimization problems. PhD thesis, Università di Roma Sapienza
go back to reference Burer S, Monteiro RDC (2003) A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math Program 95(2, Ser. B):329–357CrossRef Burer S, Monteiro RDC (2003) A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math Program 95(2, Ser. B):329–357CrossRef
go back to reference Burer S, Monteiro RDC (2005) Local minima and convergence in low-rank semidefinite programming. Math Program 103(3, Ser. A):427–444CrossRef Burer S, Monteiro RDC (2005) Local minima and convergence in low-rank semidefinite programming. Math Program 103(3, Ser. A):427–444CrossRef
go back to reference Cerulli M, De Santis M, Gaar E, Wiegele A (2021) Improving ADMMs for solving doubly nonnegative programs through dual factorization. 4OR 19:415–448CrossRef Cerulli M, De Santis M, Gaar E, Wiegele A (2021) Improving ADMMs for solving doubly nonnegative programs through dual factorization. 4OR 19:415–448CrossRef
go back to reference Chen C, He B, Ye Y, Yuan X (2016) The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math Program 155(1–2):57–79CrossRef Chen C, He B, Ye Y, Yuan X (2016) The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. Math Program 155(1–2):57–79CrossRef
go back to reference De Santis M, Rendl F, Wiegele A (2018) Using a factored dual in augmented Lagrangian methods for semidefinite programming. Oper Res Lett 46(5):523–528CrossRef De Santis M, Rendl F, Wiegele A (2018) Using a factored dual in augmented Lagrangian methods for semidefinite programming. Oper Res Lett 46(5):523–528CrossRef
go back to reference Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213CrossRef Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213CrossRef
go back to reference Dukanovic I, Rendl F (2008) A semidefinite programming-based heuristic for graph coloring. Discret Appl Math 156(2):180–189CrossRef Dukanovic I, Rendl F (2008) A semidefinite programming-based heuristic for graph coloring. Discret Appl Math 156(2):180–189CrossRef
go back to reference Gaar E, Rendl F (2019) A bundle approach for SDPs with exact subgraph constraints. In: Lodi A, Nagarajan V (eds) Integer programming and combinatorial optimization. Springer International Publishing, Cham, pp 205–218CrossRef Gaar E, Rendl F (2019) A bundle approach for SDPs with exact subgraph constraints. In: Lodi A, Nagarajan V (eds) Integer programming and combinatorial optimization. Springer International Publishing, Cham, pp 205–218CrossRef
go back to reference Giandomenico M, Letchford AN, Rossi F, Smriglio S (2009) An application of the Lovász-Schrijver m (k, k) operator to the stable set problem. Math Program 120(2):381–401CrossRef Giandomenico M, Letchford AN, Rossi F, Smriglio S (2009) An application of the Lovász-Schrijver m (k, k) operator to the stable set problem. Math Program 120(2):381–401CrossRef
go back to reference Giandomenico M, Letchford AN, Rossi F, Smriglio S (2015) Ellipsoidal relaxations of the stable set problem: theory and algorithms. SIAM J Optim 25(3):1944–1963CrossRef Giandomenico M, Letchford AN, Rossi F, Smriglio S (2015) Ellipsoidal relaxations of the stable set problem: theory and algorithms. SIAM J Optim 25(3):1944–1963CrossRef
go back to reference Giandomenico M, Rossi F, Smriglio S (2013) Strong lift-and-project cutting planes for the stable set problem. Math Program 141(1):165–192CrossRef Giandomenico M, Rossi F, Smriglio S (2013) Strong lift-and-project cutting planes for the stable set problem. Math Program 141(1):165–192CrossRef
go back to reference Grötschel M, Lovász L, Schrijver A (2012) Geometric algorithms and combinatorial optimization, vol 2. Springer Science & Business Media, New York Grötschel M, Lovász L, Schrijver A (2012) Geometric algorithms and combinatorial optimization, vol 2. Springer Science & Business Media, New York
go back to reference Gruber G, Rendl F (2003) Computational experience with stable set relaxations. SIAM J Optim 13(4):1014–1028CrossRef Gruber G, Rendl F (2003) Computational experience with stable set relaxations. SIAM J Optim 13(4):1014–1028CrossRef
go back to reference Jansson C, Chaykin D, Keil C (2007/08) Rigorous error bounds for the optimal value in semidefinite programming. SIAM J Numer Anal, 46(1):180–200 Jansson C, Chaykin D, Keil C (2007/08) Rigorous error bounds for the optimal value in semidefinite programming. SIAM J Numer Anal, 46(1):180–200
go back to reference Johnson DJ, Trick MA (eds) (1996) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, (1993). American Mathematical Society, Providence Johnson DJ, Trick MA (eds) (1996) Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11-13, (1993). American Mathematical Society, Providence
go back to reference Laurent M, Rendl F (2005) Semidefinite programming and integer programming. In: Aardal K, Nemhauser GL, Weismantel R (eds) Discrete optimization. Handbooks in operations research and management science, vol 12. Elsevier, Amsterdam, pp 393–514 Laurent M, Rendl F (2005) Semidefinite programming and integer programming. In: Aardal K, Nemhauser GL, Weismantel R (eds) Discrete optimization. Handbooks in operations research and management science, vol 12. Elsevier, Amsterdam, pp 393–514
go back to reference LLC Gurobi Optimization (2022) Gurobi optimizer reference manual LLC Gurobi Optimization (2022) Gurobi optimizer reference manual
go back to reference Locatelli M (2015) Improving upper bounds for the clique number by non-valid inequalities. Math Program 150(2):511–525CrossRef Locatelli M (2015) Improving upper bounds for the clique number by non-valid inequalities. Math Program 150(2):511–525CrossRef
go back to reference Lorenz DA, Tran-Dinh Q (2019) Non-stationary Douglas–Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence. Comput Optim Appl 74(1):67–92CrossRef Lorenz DA, Tran-Dinh Q (2019) Non-stationary Douglas–Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence. Comput Optim Appl 74(1):67–92CrossRef
go back to reference Lovász L (1979) On the Shannon capacity of a graph. IEEE Trans Inf Theory 25(1):1–7CrossRef Lovász L (1979) On the Shannon capacity of a graph. IEEE Trans Inf Theory 25(1):1–7CrossRef
go back to reference Malick J, Povh J, Rendl F, Wiegele A (2009) Regularization methods for semidefinite programming. SIAM J Optim 20(1):336–356CrossRef Malick J, Povh J, Rendl F, Wiegele A (2009) Regularization methods for semidefinite programming. SIAM J Optim 20(1):336–356CrossRef
go back to reference Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming, volume 13 of SIAM studies in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia Nesterov Y, Nemirovskii A (1994) Interior-point polynomial algorithms in convex programming, volume 13 of SIAM studies in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia
go back to reference Povh J, Rendl F, Wiegele A (2006) A boundary point method to solve semidefinite programs. Computing 78:277–286CrossRef Povh J, Rendl F, Wiegele A (2006) A boundary point method to solve semidefinite programs. Computing 78:277–286CrossRef
go back to reference Rendl F (2012) Matrix relaxations in combinatorial optimization. In: Lee J, Leyffer S (eds) Mixed integer nonlinear programming. Springer, New York, pp 483–511CrossRef Rendl F (2012) Matrix relaxations in combinatorial optimization. In: Lee J, Leyffer S (eds) Mixed integer nonlinear programming. Springer, New York, pp 483–511CrossRef
go back to reference Sun D, Toh K-C, Yang L (2015) A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J Optim 25:882–915CrossRef Sun D, Toh K-C, Yang L (2015) A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints. SIAM J Optim 25:882–915CrossRef
go back to reference Wen Z, Goldfarb D, Yin W (2010) Alternating direction augmented Lagrangian methods for semidefinite programming. Math Program Comput 2(3):203–230CrossRef Wen Z, Goldfarb D, Yin W (2010) Alternating direction augmented Lagrangian methods for semidefinite programming. Math Program Comput 2(3):203–230CrossRef
go back to reference Wiegele A, Zhao S (2022) SDP-based bounds for graph partition via extended ADMM. Comput Optim Appl 82(1):251–291CrossRef Wiegele A, Zhao S (2022) SDP-based bounds for graph partition via extended ADMM. Comput Optim Appl 82(1):251–291CrossRef
go back to reference Yang L, Sun D, Toh K-C (2015) SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math Program Comput 7(3):331–366CrossRef Yang L, Sun D, Toh K-C (2015) SDPNAL+: a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints. Math Program Comput 7(3):331–366CrossRef
Metadata
Title
Dealing with inequality constraints in large-scale semidefinite relaxations for graph coloring and maximum clique problems
Authors
Federico Battista
Marianna De Santis
Publication date
25-04-2024
Publisher
Springer Berlin Heidelberg
Published in
4OR
Print ISSN: 1619-4500
Electronic ISSN: 1614-2411
DOI
https://doi.org/10.1007/s10288-024-00569-5

Premium Partners