Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2016 | OriginalPaper | Chapter

13. Dealing with Large Volumes of Data

Author : Prof. Max Bramer

Published in: Principles of Data Mining

Publisher: Springer London

Abstract

This chapter is concerned with issues relating to large volumes of data, in particular the ability of classification algorithms to scale up to be usable for such volumes.
Some of the ways in which a classification task could be distributed over a local area network of personal computers are described and a case study using an extended version of the Prism rule induction algorithm known as PMCRI is presented. Techniques for evaluating a distributed system of this kind are then illustrated.
The issue of streaming data is also considered, leading to a discussion of a classification algorithm that lends itself well to an incremental approach: the Naïve Bayes classifier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[2]
go back to reference Catlett, J. (1991). Megainduction: machine learning on very large databases. Sydney: University of Technology. MATH Catlett, J. (1991). Megainduction: machine learning on very large databases. Sydney: University of Technology. MATH
[3]
go back to reference Provost, F. (2000). Distributed data mining: scaling up and beyond. In H. Kargupta & P. Chan (Eds.), Advances in distributed data mining. San Mateo: Morgan Kaufmann. Provost, F. (2000). Distributed data mining: scaling up and beyond. In H. Kargupta & P. Chan (Eds.), Advances in distributed data mining. San Mateo: Morgan Kaufmann.
[4]
go back to reference Stahl, F., Bramer, M., & Adda, M. (2009). PMCRI: a parallel modular classification rule induction framework. In LNAI: Vol. 5632. Machine learning and data mining in pattern recognition (pp. 148–162). Berlin: Springer. CrossRef Stahl, F., Bramer, M., & Adda, M. (2009). PMCRI: a parallel modular classification rule induction framework. In LNAI: Vol. 5632. Machine learning and data mining in pattern recognition (pp. 148–162). Berlin: Springer. CrossRef
[5]
go back to reference Shafer, J. C., Agrawal, R., & Mehta, M. (1996). SPRINT: a scalable parallel classifier for data mining. In Twenty-second international conference on very large data bases. Shafer, J. C., Agrawal, R., & Mehta, M. (1996). SPRINT: a scalable parallel classifier for data mining. In Twenty-second international conference on very large data bases.
[6]
go back to reference Stahl, F. T., Bramer, M. A., & Adda, M. (2010). J-PMCRI: a methodology for inducing pre-pruned modular classification rules. In Artificial intelligence in theory and practice III (pp. 47–56). Berlin: Springer. CrossRef Stahl, F. T., Bramer, M. A., & Adda, M. (2010). J-PMCRI: a methodology for inducing pre-pruned modular classification rules. In Artificial intelligence in theory and practice III (pp. 47–56). Berlin: Springer. CrossRef
[7]
go back to reference Stahl, F., & Bramer, M. (2013). Computationally efficient induction of classification rules with the PMCRI and J-PMCRI frameworks. Knowledge based systems. Amsterdam: Elsevier. Stahl, F., & Bramer, M. (2013). Computationally efficient induction of classification rules with the PMCRI and J-PMCRI frameworks. Knowledge based systems. Amsterdam: Elsevier.
[8]
go back to reference Nolle, L., Wong, K. C. P., & Hopgood, A. (2002). DARBS: a distributed blackboard system. In M. A. Bramer, F. Coenen, & A. Preece (Eds.), Research and development in intelligent systems XVIII. Berlin: Springer. Nolle, L., Wong, K. C. P., & Hopgood, A. (2002). DARBS: a distributed blackboard system. In M. A. Bramer, F. Coenen, & A. Preece (Eds.), Research and development in intelligent systems XVIII. Berlin: Springer.
[9]
go back to reference Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: massive online analysis, a framework for stream classification and clustering. Journal of Machine Learning Research, 99, 1601–1604. Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: massive online analysis, a framework for stream classification and clustering. Journal of Machine Learning Research, 99, 1601–1604.
Metadata
Title
Dealing with Large Volumes of Data
Author
Prof. Max Bramer
Copyright Year
2016
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-7307-6_13