Skip to main content
Top
Published in: Energy Efficiency 2/2019

08-05-2018 | Research Article

Decarbonising transport to achieve Paris Agreement targets

Authors: Sudhir Gota, Cornie Huizenga, Karl Peet, Nikola Medimorec, Stefan Bakker

Published in: Energy Efficiency | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many global transport sector decarbonisation studies assert that it is difficult for the transport sector to decarbonise and to contribute its proportional share to the ambitious climate targets set by the Paris Agreement. We challenge this argument by establishing that deep decarbonisation is possible in the transport sector, through original research that is anchored in a global meta-analysis of long-term transport sector emission pathways from over 500 bottom-up modelling estimates from 81 countries, rather than relying on aggregated regional data and modelling efforts. First, we translate the aspirational 1.5-degree Celsius (1.5DS) target to an indicative 2050 transport sector emission target of 2 GtCO2, based on proportional downscaling of existing economy-wide 2DS studies to a transport-specific 1.5DS target. We then compare this with mitigation potential derived from the aggregation of bottom-up estimates for business-as-usual growth and low-carbon scenarios from individual country studies, which we aggregate at national and global levels. This analysis suggests that in the absence of additional action, transport sector emissions could outpace earlier projections and thus become a major roadblock to avoiding dangerous climate change. Yet, if countries collectively maximise efforts to implement comprehensive low-carbon measures, the sector could achieve reductions approaching a 1.5-degree scenario. Realising the full mitigation potential of transport will require balanced implementation of low-carbon mitigation policies that avoid (or reduce) the need for transport trips; promote a shift toward more efficient travel modes; and improve performance of vehicles and fuels. The chances that such a comprehensive approach is taken will increase if countries, cities and companies establish medium- to long-term commitments to transport decarbonisation and accelerate short-term implementation of market-ready low-carbon transport measures. Setting more ambitious low-carbon transport target with mid-term implementation milestones, and closely integrating these plans with sustainable development objectives, can help to spur mitigation action consistent with a 1.5DS target. To conclude, we discuss potential limitations of a transport sector-specific analysis of emission pathways, and we offer recommendations for further refining pathways for the transport sector to realise Paris Agreement targets.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bakker, S., Zuidgeest, M., de Coninck, H., & Huizenga, C. (2014). Transport, development and climate change mitigation: towards and integrated approach. Transp Rev: A Transnatl Transdiscipl J, 34(3), 335–355.CrossRef Bakker, S., Zuidgeest, M., de Coninck, H., & Huizenga, C. (2014). Transport, development and climate change mitigation: towards and integrated approach. Transp Rev: A Transnatl Transdiscipl J, 34(3), 335–355.CrossRef
go back to reference Banister, D. (2008). The sustainable mobility paradigm. Transport Policy, 15(2), 73–80.CrossRef Banister, D. (2008). The sustainable mobility paradigm. Transport Policy, 15(2), 73–80.CrossRef
go back to reference Bataille, C., Sayer, D., & Melton, N. (2015). Pathways to deep decarbonization in Canada. New York: SDSN, IDDRI. Bataille, C., Sayer, D., & Melton, N. (2015). Pathways to deep decarbonization in Canada. New York: SDSN, IDDRI.
go back to reference BMUB. (2016). Klimaschutzplan 2050. Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. Berlin: BMUB. BMUB. (2016). Klimaschutzplan 2050. Klimaschutzpolitische Grundsätze und Ziele der Bundesregierung. Berlin: BMUB.
go back to reference Cames, M., Graichen, J., Siemons, A. & Cook, V. (2015). Emission Reduction Targets for International Aviation and Shipping. Brussels: Policy Department A for the Committee on Environment, Public Health and Food Safety (ENVI). Cames, M., Graichen, J., Siemons, A. & Cook, V. (2015). Emission Reduction Targets for International Aviation and Shipping. Brussels: Policy Department A for the Committee on Environment, Public Health and Food Safety (ENVI).
go back to reference Clapp, C., Karousakis, K., Buchner, B., & Château, J. (2009). National and sectoral GHG mitigation potential: a comparison across models. OECD/IEA Climate Change Expert Group Papers, No. 2009/07. Paris: OECD Publishing. Clapp, C., Karousakis, K., Buchner, B., & Château, J. (2009). National and sectoral GHG mitigation potential: a comparison across models. OECD/IEA Climate Change Expert Group Papers, No. 2009/07. Paris: OECD Publishing.
go back to reference Creutzig, F. (2016). Evolving narratives of low-carbon futures in transportation. Transport Reviews, 36, 341–360.CrossRef Creutzig, F. (2016). Evolving narratives of low-carbon futures in transportation. Transport Reviews, 36, 341–360.CrossRef
go back to reference Creutzig, F., Jochem, P., Edelenbosch, O. Y., Mattauch, L., van Vuuren, D. P., McCollum, D., et al. (2015). Transport: a roadblock to climate change mitigation? Science, 350(6263), 911–912.CrossRef Creutzig, F., Jochem, P., Edelenbosch, O. Y., Mattauch, L., van Vuuren, D. P., McCollum, D., et al. (2015). Transport: a roadblock to climate change mitigation? Science, 350(6263), 911–912.CrossRef
go back to reference Dulac, J. (2013). Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. Paris: IEA. Dulac, J. (2013). Global land transport infrastructure requirements: estimating road and railway infrastructure capacity and costs to 2050. Paris: IEA.
go back to reference Edelenbosch, O. Y., McCollum, D. L., van Vuuren, D. P., Bertram, C., Carrara, S., Daly, H., et al. (2017). Decomposing passenger transport futures: comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment. https://doi.org/10.1016/j.trd.2016.07.003. Edelenbosch, O. Y., McCollum, D. L., van Vuuren, D. P., Bertram, C., Carrara, S., Daly, H., et al. (2017). Decomposing passenger transport futures: comparing results of global integrated assessment models. Transportation Research Part D: Transport and Environment. https://​doi.​org/​10.​1016/​j.​trd.​2016.​07.​003.
go back to reference EEA. (2016). Transitions towards a more sustainable mobility system. EEA Report No 34/2016. Luxembourg: Publications Office of the European Union. EEA. (2016). Transitions towards a more sustainable mobility system. EEA Report No 34/2016. Luxembourg: Publications Office of the European Union.
go back to reference Figueroa, M., Fulton, L., & Tiwari, G. (2014). Avoiding, transforming, transitioning: pathways to sustainable low carbon passenger transport in developing countries. Current Opinion in Environmental Sustainability, 5, 184–190.CrossRef Figueroa, M., Fulton, L., & Tiwari, G. (2014). Avoiding, transforming, transitioning: pathways to sustainable low carbon passenger transport in developing countries. Current Opinion in Environmental Sustainability, 5, 184–190.CrossRef
go back to reference Fulton, L., Cazolla, P., & Cuenot, F. (2009). IEA Mobility Model (MoMo) and its use in the ETP 2008. Energy Policy, 37(10), 3758–3768.CrossRef Fulton, L., Cazolla, P., & Cuenot, F. (2009). IEA Mobility Model (MoMo) and its use in the ETP 2008. Energy Policy, 37(10), 3758–3768.CrossRef
go back to reference Greenpeace. (2010). Energy [R]evolution 2010: A Sustainable World Energy Outlook. Amsterdam: Greenpeace International. Greenpeace. (2010). Energy [R]evolution 2010: A Sustainable World Energy Outlook. Amsterdam: Greenpeace International.
go back to reference Hoen, A., Geurs, K., Wilde, H. d., Hanschke, C., & Uyterlinde, M. (2009). CO 2 emission reduction in transport: confronting medium-term and long-term options. Bilthoven: Netherlands Environmental Assessment Agency. Hoen, A., Geurs, K., Wilde, H. d., Hanschke, C., & Uyterlinde, M. (2009). CO 2 emission reduction in transport: confronting medium-term and long-term options. Bilthoven: Netherlands Environmental Assessment Agency.
go back to reference Hong, S., Chung, Y., Kim, J., & Chun, D. (2016). Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model. Renewable and Sustainable Energy Reviews, 60, 549–559.CrossRef Hong, S., Chung, Y., Kim, J., & Chun, D. (2016). Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model. Renewable and Sustainable Energy Reviews, 60, 549–559.CrossRef
go back to reference ICCT. (2012). Global transportation energy and climate roadmap—the impact of transportation policies and their potential to reduce oil consumption and greenhouse gas emissions. Washington, D.C.: ICCT. ICCT. (2012). Global transportation energy and climate roadmap—the impact of transportation policies and their potential to reduce oil consumption and greenhouse gas emissions. Washington, D.C.: ICCT.
go back to reference IEA. (2014). Energy technology perspectives 2014—harnessing electricity’s potential. Paris: IEA Publications. IEA. (2014). Energy technology perspectives 2014—harnessing electricity’s potential. Paris: IEA Publications.
go back to reference IEA. (2015). Energy technology perspectives 2015—mobilising innovation to accelerate climate action. Paris: IEA Publications. IEA. (2015). Energy technology perspectives 2015—mobilising innovation to accelerate climate action. Paris: IEA Publications.
go back to reference IEA. (2016a). CO 2 emissions from fuel combustion—highlights. Paris: IEA Publications. IEA. (2016a). CO 2 emissions from fuel combustion—highlights. Paris: IEA Publications.
go back to reference IEA. (2016b). World energy outlook. Paris: IEA Publications. IEA. (2016b). World energy outlook. Paris: IEA Publications.
go back to reference IEA. (2016c). Energy technology perspectives 2016—towards sustainable urban energy systems. Paris: IEA Publications. IEA. (2016c). Energy technology perspectives 2016—towards sustainable urban energy systems. Paris: IEA Publications.
go back to reference IEA. (2016d). Global EV Outlook 2016. Paris: IEA Publications. IEA. (2016d). Global EV Outlook 2016. Paris: IEA Publications.
go back to reference IEA. (2017a). Energy technology perspectives 2017—catalysing energy technology transformations. Paris: IEA Publications. IEA. (2017a). Energy technology perspectives 2017—catalysing energy technology transformations. Paris: IEA Publications.
go back to reference IEA. (2017c). Global EV Outlook 2017. Paris: IEA Publications. IEA. (2017c). Global EV Outlook 2017. Paris: IEA Publications.
go back to reference IPCC (2014b). Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014b). Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
go back to reference ITF. (2017). Transport Outlook 2017. Transport demand and CO 2 emissions to 2050. Paris: OECD Publishing. ITF. (2017). Transport Outlook 2017. Transport demand and CO 2 emissions to 2050. Paris: OECD Publishing.
go back to reference ITF. (2018). Decarbonising maritime transport. Pathways to zero-carbon shipping by 2035. Paris: OECD Publishing. ITF. (2018). Decarbonising maritime transport. Pathways to zero-carbon shipping by 2035. Paris: OECD Publishing.
go back to reference International Maritime Organization. (2015). Third IMO Greenhouse Gas Study 2014. London: International Maritime Organization. International Maritime Organization. (2015). Third IMO Greenhouse Gas Study 2014. London: International Maritime Organization.
go back to reference Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technology Analysis & Strategic Management, 10(2), 175–195.CrossRef Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technology Analysis & Strategic Management, 10(2), 175–195.CrossRef
go back to reference Lindegaard, A., Aasrud, A., Andersen, A., Andresen, S. R., Asphjell, T., Backer, E. B., et al. (2014). Knowledge base for low-carbon transition in Norway. Mexico City: Norwegian Environment Agency. Lindegaard, A., Aasrud, A., Andersen, A., Andresen, S. R., Asphjell, T., Backer, E. B., et al. (2014). Knowledge base for low-carbon transition in Norway. Mexico City: Norwegian Environment Agency.
go back to reference Mittal, S., Dai, H., Fujimori, S., Hanaoka, T., & Zhang, R. (2017). Key factors influencing the global passenger transport dynamics using the AIM/transport model. Transportation Research Part D: Transport and Environonment, 55, 373–388.CrossRef Mittal, S., Dai, H., Fujimori, S., Hanaoka, T., & Zhang, R. (2017). Key factors influencing the global passenger transport dynamics using the AIM/transport model. Transportation Research Part D: Transport and Environonment, 55, 373–388.CrossRef
go back to reference Mulholland, E., Teter, J., Cazzola, P., McDonald, Z., & Gallachóir, B. (2018). The long haul towards decarbonising road freight—a global assessment to 2050. Applied Energy, 216, 678–693.CrossRef Mulholland, E., Teter, J., Cazzola, P., McDonald, Z., & Gallachóir, B. (2018). The long haul towards decarbonising road freight—a global assessment to 2050. Applied Energy, 216, 678–693.CrossRef
go back to reference National Renewable Energy Laboratory. (2015). Transformative Reduction of Transportation Greenhouse Gas Emissions: Opportunities for Change in Technologies and Systems. Golden: National Renewable. National Renewable Energy Laboratory. (2015). Transformative Reduction of Transportation Greenhouse Gas Emissions: Opportunities for Change in Technologies and Systems. Golden: National Renewable.
go back to reference Pietzcker, R. C., Longden, T., Chen, W., Fu, S., Kriegler, E., Kyle, P., & Luderer, G. (2014). Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models. Energy, 64(Supplement C), 95–108.CrossRef Pietzcker, R. C., Longden, T., Chen, W., Fu, S., Kriegler, E., Kyle, P., & Luderer, G. (2014). Long-term transport energy demand and climate policy: alternative visions on transport decarbonization in energy-economy models. Energy, 64(Supplement C), 95–108.CrossRef
go back to reference Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 [deg]C. [Perspective]. Nature Climate Change, 5(6), 519–527.CrossRef Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey, V., & Riahi, K. (2015). Energy system transformations for limiting end-of-century warming to below 1.5 [deg]C. [Perspective]. Nature Climate Change, 5(6), 519–527.CrossRef
go back to reference Schäfer, A. W. (2017). Long-term trends in domestic US passenger travel: the past 110 years and the next 90. Transportation, 44(2), 293–310.CrossRef Schäfer, A. W. (2017). Long-term trends in domestic US passenger travel: the past 110 years and the next 90. Transportation, 44(2), 293–310.CrossRef
go back to reference Shafiei, E., Davidsdottir, B., Leaver, J., & Stefansson, H. (2017). Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a simulation-based comparison between hydrogen and electricity. Journal of Cleaner Production, 141, 237–247.CrossRef Shafiei, E., Davidsdottir, B., Leaver, J., & Stefansson, H. (2017). Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a simulation-based comparison between hydrogen and electricity. Journal of Cleaner Production, 141, 237–247.CrossRef
go back to reference Siagian, U. W. R., Dewi, R. G., Boer, R., Hendrawan, I., Yuwono, B. B., & Ginting, G. E. (2015). Pathways to deep decarbonization in Indonesia. Jakarta: SDSN, IDDRI. Siagian, U. W. R., Dewi, R. G., Boer, R., Hendrawan, I., Yuwono, B. B., & Ginting, G. E. (2015). Pathways to deep decarbonization in Indonesia. Jakarta: SDSN, IDDRI.
go back to reference Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D'Agosto, M., Dimitriu, D., et al. (2014). Transport. In Climate Change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 599–670). New York: Cambridge University Press. Sims, R., Schaeffer, R., Creutzig, F., Cruz-Núñez, X., D'Agosto, M., Dimitriu, D., et al. (2014). Transport. In Climate Change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 599–670). New York: Cambridge University Press.
go back to reference Skinner, I., van Essen, H., Smokers, R., & Hill, N. (2010). EU Transport GHG: Routes to 2050? European Commission’s Directorate-General Environment. Brussels: European Commission. Skinner, I., van Essen, H., Smokers, R., & Hill, N. (2010). EU Transport GHG: Routes to 2050? European Commission’s Directorate-General Environment. Brussels: European Commission.
go back to reference UNEP. (2016). The Emissions Gap Report 2016. A UNEP Synthesis Report. Nairobi: UNEP. UNEP. (2016). The Emissions Gap Report 2016. A UNEP Synthesis Report. Nairobi: UNEP.
go back to reference World Energy Council (2011). Global Transport Scenarios 2050. London: World Energy Council. World Energy Council (2011). Global Transport Scenarios 2050. London: World Energy Council.
go back to reference Yeh, S., Mishra, G. S., Fulton, L., Kyle, P., McCollum, D. L., Miller, J., Cazzola, P., & Teter, J. (2017). Detailed assessment of global transport-energy models’ structures and projections. Transportation Research Part D: Transport and Environonment, 55, 294–309.CrossRef Yeh, S., Mishra, G. S., Fulton, L., Kyle, P., McCollum, D. L., Miller, J., Cazzola, P., & Teter, J. (2017). Detailed assessment of global transport-energy models’ structures and projections. Transportation Research Part D: Transport and Environonment, 55, 294–309.CrossRef
Metadata
Title
Decarbonising transport to achieve Paris Agreement targets
Authors
Sudhir Gota
Cornie Huizenga
Karl Peet
Nikola Medimorec
Stefan Bakker
Publication date
08-05-2018
Publisher
Springer Netherlands
Published in
Energy Efficiency / Issue 2/2019
Print ISSN: 1570-646X
Electronic ISSN: 1570-6478
DOI
https://doi.org/10.1007/s12053-018-9671-3

Other articles of this Issue 2/2019

Energy Efficiency 2/2019 Go to the issue