Skip to main content
Top

2025 | OriginalPaper | Chapter

Deciphering Fitness Application Data Using Machine Learning

Authors : Sagar Puniyani, Dhruv Girotra, Divya Agarwal, Deepali Virmani

Published in: Innovative Computing and Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper predicts fitness application data of people using two machine learning techniques, linear regression and decision trees. Fitness Tracker collects data pertaining of physical activities such as steps, distance, calories burnt, sleep routine, etc. This paper explores the correlation between the aforementioned physical activities to find out which of the following affects calories burnt the highest. Comparison is done among two popular machine learning algorithms to depict their performance, interpretability, scalability, and applicability to the different datasets. This allows for us to maximize efficiency by reducing the collection of unnecessary data and further discuss suitable machine learning algorithms to implement in fitness devices for better accuracy in readings from fitness applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, Z. (2015). Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Transactions on Biomedical Engineering, 62(8), 1902–1910.CrossRef Zhang, Z. (2015). Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Transactions on Biomedical Engineering, 62(8), 1902–1910.CrossRef
2.
go back to reference Meng, Y., et al. (2019). A machine learning approach to classifying self-reported health status in a cohort of patients with heart disease using activity tracker data. IEEE Journal of Biomedical and Health Informatics, 24(3), 878–884. Meng, Y., et al. (2019). A machine learning approach to classifying self-reported health status in a cohort of patients with heart disease using activity tracker data. IEEE Journal of Biomedical and Health Informatics, 24(3), 878–884.
3.
go back to reference Zhou, W., & Piramuthu, S. (2014) Security/privacy of wearable fitness tracking IoT devices. In 2014 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE. Zhou, W., & Piramuthu, S. (2014) Security/privacy of wearable fitness tracking IoT devices. In 2014 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE.
4.
go back to reference Bender, C. G., et al. (2017). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS). IEEE. Bender, C. G., et al. (2017). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS). IEEE.
5.
go back to reference Eberz, S., Lovisotto, G., Patane, A., Kwiatkowska, M., Lenders, V., & Martinovic, I. (2018, May). When your fitness tracker betrays you: Quantifying the predictability of biometric features across contexts. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 889–905). IEEE. Eberz, S., Lovisotto, G., Patane, A., Kwiatkowska, M., Lenders, V., & Martinovic, I. (2018, May). When your fitness tracker betrays you: Quantifying the predictability of biometric features across contexts. In 2018 IEEE Symposium on Security and Privacy (SP) (pp. 889–905). IEEE.
6.
go back to reference Bender, C. G., Hoffstot, J. C., Combs, B. T., Hooshangi, S., & Cappos, J. (2017, March). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–6). IEEE. Bender, C. G., Hoffstot, J. C., Combs, B. T., Hooshangi, S., & Cappos, J. (2017, March). Measuring the fitness of fitness trackers. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1–6). IEEE.
7.
go back to reference Kitsiou, S., Thomas, M., Marai, G. E., Maglaveras, N., Kondos, G., Arena, R., & Gerber, B. (2017, February). Development of an innovative mHealth platform for remote physical activity monitoring and health coaching of cardiac rehabilitation patients. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 133–136). IEEE. Kitsiou, S., Thomas, M., Marai, G. E., Maglaveras, N., Kondos, G., Arena, R., & Gerber, B. (2017, February). Development of an innovative mHealth platform for remote physical activity monitoring and health coaching of cardiac rehabilitation patients. In 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) (pp. 133–136). IEEE.
8.
go back to reference Tiwari, G., & Gupta, S. (2021). An mmWave radar based real-time contactless fitness tracker using deep CNNs. IEEE Sensors Journal, 21(15), 17262–17270.CrossRef Tiwari, G., & Gupta, S. (2021). An mmWave radar based real-time contactless fitness tracker using deep CNNs. IEEE Sensors Journal, 21(15), 17262–17270.CrossRef
9.
go back to reference Lowens, B., Motti, V. G., & Caine, K. (2017, August). Wearable privacy: Skeletons in the data closet. In 2017 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 295–304). IEEE. Lowens, B., Motti, V. G., & Caine, K. (2017, August). Wearable privacy: Skeletons in the data closet. In 2017 IEEE International Conference on Healthcare Informatics (ICHI) (pp. 295–304). IEEE.
10.
go back to reference Yin, J., Feng, J., & Wang, Y. (2015). Social media and multinational corporations’ corporate social responsibility in China: The case of ConocoPhillips oil spill incident. IEEE Transactions on Professional Communication, 58(2), 135–153.CrossRef Yin, J., Feng, J., & Wang, Y. (2015). Social media and multinational corporations’ corporate social responsibility in China: The case of ConocoPhillips oil spill incident. IEEE Transactions on Professional Communication, 58(2), 135–153.CrossRef
11.
go back to reference Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.CrossRef Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine learning. Journal of Applied Science and Technology Trends, 1(4), 140–147.CrossRef
12.
go back to reference Yao, W., & Li, L. (2014). A new regression model: Modal linear regression. Scandinavian Journal of Statistics, 41(3), 656–671.MathSciNetCrossRef Yao, W., & Li, L. (2014). A new regression model: Modal linear regression. Scandinavian Journal of Statistics, 41(3), 656–671.MathSciNetCrossRef
13.
go back to reference Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. (2020). Comparison of VPN protocols at network layer focusing on wire guard protocol. Abdulazeez, A., Salim, B., Zeebaree, D., & Doghramachi, D. (2020). Comparison of VPN protocols at network layer focusing on wire guard protocol.
14.
go back to reference Zhang, Z., Li, Y., Li, L., Li, Z., & Liu, S. (2019). Multiple linear regression for high efficiency video intra coding. In ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019 (pp. 1832–1836). Zhang, Z., Li, Y., Li, L., Li, Z., & Liu, S. (2019). Multiple linear regression for high efficiency video intra coding. In ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019 (pp. 1832–1836).
15.
go back to reference Barthet, M., Fazekas, G., & Sandler, M. (2013). Music emotion recognition: From content-to context-based models. In From Sounds to Music and Emotions: 9th International Symposium, CMMR 2012, London, UK, June 19–22, 2012. Revised Selected Papers (Vol. 9). Springer. Barthet, M., Fazekas, G., & Sandler, M. (2013). Music emotion recognition: From content-to context-based models. In From Sounds to Music and Emotions: 9th International Symposium, CMMR 2012, London, UK, June 19–22, 2012. Revised Selected Papers (Vol. 9). Springer.
16.
go back to reference Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.CrossRef Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623.CrossRef
17.
go back to reference Verran, J. A., & Ferketich, S. L. (1984). Residual analysis for statistical assumptions of regression equations. Western Journal of Nursing Research, 6(1), 27–40.CrossRef Verran, J. A., & Ferketich, S. L. (1984). Residual analysis for statistical assumptions of regression equations. Western Journal of Nursing Research, 6(1), 27–40.CrossRef
18.
go back to reference Priyam, A., Abhijeeta, G. R., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of Current Engineering and Technology, 3(2), 334–337. Priyam, A., Abhijeeta, G. R., Rathee, A., & Srivastava, S. (2013). Comparative analysis of decision tree classification algorithms. International Journal of Current Engineering and Technology, 3(2), 334–337.
19.
go back to reference Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78.CrossRef Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74–78.CrossRef
20.
go back to reference Ray, P. A., et al. (2019). Growth of the decision tree: Advances in bottom‐up climate change risk management. JAWRA Journal of the American Water Resources Association, 55(4), 920–937. Ray, P. A., et al. (2019). Growth of the decision tree: Advances in bottom‐up climate change risk management. JAWRA Journal of the American Water Resources Association, 55(4), 920–937.
21.
go back to reference Mohamed, W. N. H. W., Salleh, M. N. M., & Omar, A. H. (2012, November). A comparative study of reduced error pruning method in decision tree algorithms. In 2012 IEEE International Conference on Control System, Computing and Engineering (pp. 392–397). IEEE. Mohamed, W. N. H. W., Salleh, M. N. M., & Omar, A. H. (2012, November). A comparative study of reduced error pruning method in decision tree algorithms. In 2012 IEEE International Conference on Control System, Computing and Engineering (pp. 392–397). IEEE.
22.
go back to reference Chang, Y.-J., et al. (2019). Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM, 71, 3433–3442. Chang, Y.-J., et al. (2019). Prediction of the composition and hardness of high-entropy alloys by machine learning. JOM, 71, 3433–3442.
23.
go back to reference Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. In Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (Vol. 14). Department of Emergency Medicine Harbor-UCLA Medical Center Torrance. Lewis, R. J. (2000). An introduction to classification and regression tree (CART) analysis. In Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, California (Vol. 14). Department of Emergency Medicine Harbor-UCLA Medical Center Torrance.
24.
go back to reference Chen, T. Y., Chang, Y. H., Yang, M. C., & Chen, H. W. (2020, August). How to cultivate a green decision tree without loss of accuracy? In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (pp. 1–6). Chen, T. Y., Chang, Y. H., Yang, M. C., & Chen, H. W. (2020, August). How to cultivate a green decision tree without loss of accuracy? In Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design (pp. 1–6).
25.
go back to reference Li, J., Fong, S., Mohammed, S., Fiaidhi, J., Chen, Q., & Tan, Z. (2016). Solving the under-fitting problem for decision tree algorithms by incremental swarm optimization in rare-event healthcare classification. Journal of Medical Imaging and Health Informatics, 6(4), 1102–1110.CrossRef Li, J., Fong, S., Mohammed, S., Fiaidhi, J., Chen, Q., & Tan, Z. (2016). Solving the under-fitting problem for decision tree algorithms by incremental swarm optimization in rare-event healthcare classification. Journal of Medical Imaging and Health Informatics, 6(4), 1102–1110.CrossRef
26.
go back to reference Delgado, R., & Núñez-González, J. D. (2019). Enhancing Confusion Entropy (CEN) for binary and multiclass classification. PLoS ONE, 14(1), e0210264.CrossRef Delgado, R., & Núñez-González, J. D. (2019). Enhancing Confusion Entropy (CEN) for binary and multiclass classification. PLoS ONE, 14(1), e0210264.CrossRef
Metadata
Title
Deciphering Fitness Application Data Using Machine Learning
Authors
Sagar Puniyani
Dhruv Girotra
Divya Agarwal
Deepali Virmani
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_37