Skip to main content
Top

2024 | OriginalPaper | Chapter

Decision Aided Tool for a SME Supply Chain Sustainable Digital Transformation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter delves into the creation of a decision-aid tool designed to support SMEs in their journey towards sustainable digital transformation within their supply chains. By incorporating Industry 4.0 concepts such as cyber-physical systems, the Internet of Things, and artificial intelligence, the tool aims to optimize performance across multiple dimensions including cost, quality, lead time, and sustainability. The methodology combines established frameworks like GRAI with innovative technologies to continuously monitor and improve supply chain processes. The tool's architecture is detailed, showcasing modules for data management, expert system analysis, and scenario building. Real-world case studies demonstrate the tool's effectiveness, offering a glimpse into the future of sustainable supply chain management.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dossou, P.E.: Using Industry 4.0 and theory of systems for improving company supply chain. PROMFG_30576 in Procedia Manuf. 38, 1750–1757 (2019) Dossou, P.E.: Using Industry 4.0 and theory of systems for improving company supply chain. PROMFG_30576 in Procedia Manuf. 38, 1750–1757 (2019)
2.
go back to reference Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRef Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRef
3.
go back to reference Anosike, A., Alafropatis, K., Garza-Reyes, J.A., Kumar, A., Luthra, S., Rocha-Lona, L.: Lean manufacturing and internet of things-a synergetic or antagonist relationship? In: Computer in Industry vol. 129, Elsevier (2021) Anosike, A., Alafropatis, K., Garza-Reyes, J.A., Kumar, A., Luthra, S., Rocha-Lona, L.: Lean manufacturing and internet of things-a synergetic or antagonist relationship? In: Computer in Industry vol. 129, Elsevier (2021)
4.
go back to reference Malik, A.A., Brem, A.: Digital twins for collaborative robots: a case study in human-robot interaction. Robot. Comput.-Integr. Manuf. 68, 102092 (2021)CrossRef Malik, A.A., Brem, A.: Digital twins for collaborative robots: a case study in human-robot interaction. Robot. Comput.-Integr. Manuf. 68, 102092 (2021)CrossRef
5.
go back to reference Chen, Z., Zhang, L., Wang, X., Wang, K.: Cloud-edge collaboration task scheduling in cloud manufacturing: an attention-based deep reinforcement learning approach. Comput. Ind. Eng. 177, 109053 (2023)CrossRef Chen, Z., Zhang, L., Wang, X., Wang, K.: Cloud-edge collaboration task scheduling in cloud manufacturing: an attention-based deep reinforcement learning approach. Comput. Ind. Eng. 177, 109053 (2023)CrossRef
6.
go back to reference Jan, Z., et al.: Artificial intelligence for industry 4.0: systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 216 (2023) Jan, Z., et al.: Artificial intelligence for industry 4.0: systematic review of applications, challenges, and opportunities. Expert Syst. Appl. 216 (2023)
7.
go back to reference Tao, F., Qi, Q., Wang, L., Nee, A.Y.C.: Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering 5, 653–661 (2019)CrossRef Tao, F., Qi, Q., Wang, L., Nee, A.Y.C.: Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering 5, 653–661 (2019)CrossRef
8.
go back to reference Pacaux-Lemoine, M.-P., Trentesaux, D., Zambrano Rey, G., Millot, P.: Designing intelligent manufacturing systems through Human-Machine Cooperation principles: a human-centered approach. Comput. Ind. Eng. 111, 581–595 (2017) Pacaux-Lemoine, M.-P., Trentesaux, D., Zambrano Rey, G., Millot, P.: Designing intelligent manufacturing systems through Human-Machine Cooperation principles: a human-centered approach. Comput. Ind. Eng. 111, 581–595 (2017)
9.
go back to reference Wei, Y., Zhao, W., Wan, D.: Parallel efficient global optimization algorithm for ship hull form optimization. In: 15th International Symposium on Practical Design of Ships and Other Floating Structures PRADS 2022, Dubrovnik, Croatia (2022) Wei, Y., Zhao, W., Wan, D.: Parallel efficient global optimization algorithm for ship hull form optimization. In: 15th International Symposium on Practical Design of Ships and Other Floating Structures PRADS 2022, Dubrovnik, Croatia (2022)
10.
go back to reference Hariyani, D., Mishra, S.: Organizational enablers for sustainable manufacturing and industrial ecology. Cleaner Eng. Technol. 6 (2022) Hariyani, D., Mishra, S.: Organizational enablers for sustainable manufacturing and industrial ecology. Cleaner Eng. Technol. 6 (2022)
12.
go back to reference Christopher, M.: Logistics and Supply Chain Management, 5th edn. FT Publishing International (2016). ISBN13:978–1292083797 Christopher, M.: Logistics and Supply Chain Management, 5th edn. FT Publishing International (2016). ISBN13:978–1292083797
13.
go back to reference Mentzer, J.T., Dewitt, W., Keebler, J.S.: Defining Supply Chain Management. J. Bus. Logist. 22(2), 1–25 (2001)CrossRef Mentzer, J.T., Dewitt, W., Keebler, J.S.: Defining Supply Chain Management. J. Bus. Logist. 22(2), 1–25 (2001)CrossRef
14.
go back to reference Hanfield, R., Walton, S.V., Sroufe, R., Melnyk, S.A.: Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur. J. Oper. Res. 141, 70–87 (2002)CrossRef Hanfield, R., Walton, S.V., Sroufe, R., Melnyk, S.A.: Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur. J. Oper. Res. 141, 70–87 (2002)CrossRef
15.
go back to reference Manavalan, E., Jayakrishna, K.: A review of internet of things (IoT) embedded sustainable supply chain for Industry 4.0 requirements. Comput. Ind. Eng. 127, 925–953 (2019)CrossRef Manavalan, E., Jayakrishna, K.: A review of internet of things (IoT) embedded sustainable supply chain for Industry 4.0 requirements. Comput. Ind. Eng. 127, 925–953 (2019)CrossRef
16.
go back to reference Montori, V.M., Gafni, A., Charles, C.: A shared treatment decision-making approach between patients with chronic conditions and their clinicians: the case of diabetes. Health Expect. 9(1), 25–36 (2006)CrossRef Montori, V.M., Gafni, A., Charles, C.: A shared treatment decision-making approach between patients with chronic conditions and their clinicians: the case of diabetes. Health Expect. 9(1), 25–36 (2006)CrossRef
17.
go back to reference Kunneman, M., Engelhardt, E.G., Ten Hove, F.L., Marijnen, C.A., Portielje, J.E., Smets, E.M.: Deciding about (neo-) adjuvant rectal and breast cancer treatment: missed opportunities for shared decision making. Acta Oncol. 55(2), 134–139 (2016)CrossRef Kunneman, M., Engelhardt, E.G., Ten Hove, F.L., Marijnen, C.A., Portielje, J.E., Smets, E.M.: Deciding about (neo-) adjuvant rectal and breast cancer treatment: missed opportunities for shared decision making. Acta Oncol. 55(2), 134–139 (2016)CrossRef
19.
go back to reference Lei, Y., Yang, B.: Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech. Syst. Signal Process. 138, 106587 (2020)CrossRef Lei, Y., Yang, B.: Applications of machine learning to machine fault diagnosis: a review and roadmap. Mech. Syst. Signal Process. 138, 106587 (2020)CrossRef
20.
go back to reference Dopico, M., Gomez, A., De la Fuente, D. Garcia, N., Rosillo, R. Puche, J.: A vision of Industry 4.0 from an artificial intelligence point of view. In: International Conference of Artificial Intelligence, pp. 407–413. CSREA Press (2016). ISBN: 1-60132-438-3 Dopico, M., Gomez, A., De la Fuente, D. Garcia, N., Rosillo, R. Puche, J.: A vision of Industry 4.0 from an artificial intelligence point of view. In: International Conference of Artificial Intelligence, pp. 407–413. CSREA Press (2016). ISBN: 1-60132-438-3
21.
go back to reference Lu, Y.: Cyber physical system (CPS) - based Industry 4.0: a survey. J. Ind. Int. Manag. 2(3), 1750014 (2017) Lu, Y.: Cyber physical system (CPS) - based Industry 4.0: a survey. J. Ind. Int. Manag. 2(3), 1750014 (2017)
22.
go back to reference Ferrantino, M.J., Koten, E.E.: Understanding Supply Chain 4.0 and its potential impact on global value chains. Technological innovation, supply chain trade, and workers in globalized world. chapter 5 (2019) Ferrantino, M.J., Koten, E.E.: Understanding Supply Chain 4.0 and its potential impact on global value chains. Technological innovation, supply chain trade, and workers in globalized world. chapter 5 (2019)
23.
go back to reference Dossou, P.E.: Development of a new framework for implementing industry 4.0 in companies. Procedia Manuf. 38, 573–580 (2019)CrossRef Dossou, P.E.: Development of a new framework for implementing industry 4.0 in companies. Procedia Manuf. 38, 573–580 (2019)CrossRef
24.
go back to reference John P.: Paginations 2.0: Why I Would Choose MongoDB, Published (2022) John P.: Paginations 2.0: Why I Would Choose MongoDB, Published (2022)
25.
go back to reference Santos, M.Y., Sa, J.O., Costa C.: A big data analytics architecture for Industry 4.0. In: Advances in Intelligent Systems and Computing. WORLDCIST vol. 17, Porto Santo, Portugal (2017) Santos, M.Y., Sa, J.O., Costa C.: A big data analytics architecture for Industry 4.0. In: Advances in Intelligent Systems and Computing. WORLDCIST vol. 17, Porto Santo, Portugal (2017)
26.
go back to reference Peterson, M.: An Introduction to Decision Theory, vol. 11. Cambridge University Press, Cambridge (2017) Peterson, M.: An Introduction to Decision Theory, vol. 11. Cambridge University Press, Cambridge (2017)
Metadata
Title
Decision Aided Tool for a SME Supply Chain Sustainable Digital Transformation
Authors
Paul-Eric Dossou
Kom Darol Tchuenmegne
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_125

Premium Partner