Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

24-03-2021 | Original Paper | Issue 3/2021

Health and Technology 3/2021

Decision tree modeling in R software to aid clinical decision making

Journal:
Health and Technology > Issue 3/2021
Authors:
Elena G. Toth, David Gibbs, Jackie Moczygemba, Alexander McLeod

Abstract

There is increasing excitement in the healthcare field about using behavioral data and healthcare analytics for disease risk prediction, clinical decision support, and overall improvement of personalized medicine. However, this excitement has not effectively translated to improved clinical outcomes due to knowledge gaps, a lack of behavioral risk models, and resistance to evidence-based practice. Reportedly, only 10–20% of clinical decisions are known to be evidence-based and this problem is further highlighted by the fact that the US spends more money on healthcare per person than any other nation, while still wrestling with poor health outcomes. Critics say there are inadequate technological resources and analytical education for clinicians to make behavioral data useful in the medical world. Healthcare technology innovators often neglect important aspects of the reality of integrating clinical data into electronic healthcare solutions. In this study, we developed a decision tree model using R statistical software to predict diabetes since it is among the top causes of death in the US, can be poorly managed, and provides an opportunity for improvement using analytics. This study examined behavioral data and healthcare analytics for use in clinical applications, demonstrating that health information professionals can develop behavioral risk factor prediction models to bridge the gap. Results indicated that decision trees are effective in classifying diabetes in an individual at up to 89.36% accuracy.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2021

Health and Technology 3/2021 Go to the issue

Premium Partner

    Image Credits