Skip to main content
Top

2024 | OriginalPaper | Chapter

Decomposing the \(\lambda \)-Fold Complete 3-Uniform Hypergraph into the Lines of the Pasch Configuration

Authors : Ryan C. Bunge, Skyler R. Dodson, Saad I. El-Zanati, Jacob Franzmeier, Dru Horne

Published in: Combinatorics, Graph Theory and Computing

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let P denote the 3-uniform hypergraph on 6 vertices whose edges form the lines of the Pasch configuration. We give necessary and sufficient conditions for the existence of P-decompositions of the \(\lambda \)-fold complete 3-uniform hypergraph on v vertices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math.345 (2022), 112676. M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math., to appear. M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math.345 (2022), 112676. M. Akin, R. C. Bunge, S. I. El-Zanati, J. Hamilton, B. Kolle, S. Lehmann, and L. Neiburger, On tight 6-cycle decompositions of complete 3-uniform hypergraphs, Discrete Math., to appear.
3.
go back to reference Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai10, North-Holland, Amsterdam, 1975, 91–108. Zs. Baranyai, On the factorization of the complete uniform hypergraph, in: Infinite and finite sets, Colloq. Math. Soc. János Bolyai10, North-Holland, Amsterdam, 1975, 91–108.
4.
go back to reference J.-C. Bermond, A. Germa, and D. Sotteau,Hypergraph-designs, Ars Combinatoria3 (1977), 47–66.MathSciNet J.-C. Bermond, A. Germa, and D. Sotteau,Hypergraph-designs, Ars Combinatoria3 (1977), 47–66.MathSciNet
5.
go back to reference D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin.60 (2014), 227–254.MathSciNet D. Bryant, S. Herke, B. Maenhaut, and W. Wannasit, Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs, Australas. J. Combin.60 (2014), 227–254.MathSciNet
7.
go back to reference R. C. Bunge, D. Collins, D. Conko-Camel, S. I. El-Zanati, R. Liebrecht, and A. Vasquez, Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles, Opuscula Math.40 (2020), 209–225.MathSciNetCrossRef R. C. Bunge, D. Collins, D. Conko-Camel, S. I. El-Zanati, R. Liebrecht, and A. Vasquez, Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles, Opuscula Math.40 (2020), 209–225.MathSciNetCrossRef
8.
go back to reference R. C. Bunge, B. D. Darrow, S. I. El-Zanati, K. P. Hadaway, M. K. Pryor, A. J. Romer, A. Squires, and A. C. Stover, On tight 9-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.80 (2021), 233–240.MathSciNet R. C. Bunge, B. D. Darrow, S. I. El-Zanati, K. P. Hadaway, M. K. Pryor, A. J. Romer, A. Squires, and A. C. Stover, On tight 9-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin.80 (2021), 233–240.MathSciNet
9.
go back to reference R. C. Bunge, S. I. El-Zanati, L. Haman, C. Hatzer, K. Koe, and K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl.87 (2019), 75–84.MathSciNet R. C. Bunge, S. I. El-Zanati, L. Haman, C. Hatzer, K. Koe, and K. Spornberger, On loose 4-cycle decompositions of complete 3-uniform hypergraphs, Bull. Inst. Combin. Appl.87 (2019), 75–84.MathSciNet
10.
go back to reference R. C. Bunge, S. I. El-Zanati, J. Jeffries, and C. Vanden Eynden, Edge orbits and cyclic and r-pyramidal decompositions of complete uniform hypergraphs, Discrete Math.341 (2018), 3348–3354.MathSciNetCrossRef R. C. Bunge, S. I. El-Zanati, J. Jeffries, and C. Vanden Eynden, Edge orbits and cyclic and r-pyramidal decompositions of complete uniform hypergraphs, Discrete Math.341 (2018), 3348–3354.MathSciNetCrossRef
11.
go back to reference R. C. Bunge, S. I. El-Zanati, J. Jetton, M. Juarez, A. J. Netz, D. Roberts, and P. Ward, On loose 5-cycle decompositions, packings, and coverings of complete \(\lambda \)-fold 3-uniform hypergraphs, Ars Combin., to appear. R. C. Bunge, S. I. El-Zanati, J. Jetton, M. Juarez, A. J. Netz, D. Roberts, and P. Ward, On loose 5-cycle decompositions, packings, and coverings of complete \(\lambda \)-fold 3-uniform hypergraphs, Ars Combin., to appear.
12.
go back to reference C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110. C. J. Colbourn and R. Mathon, Steiner systems, in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 102–110.
13.
go back to reference S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages. S. Glock, D. Kühn, A. Lo, and D. Osthus, The existence of designs via iterative absorption, arXiv:1611.06827v2, (2017), 63 pages.
14.
go back to reference S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages. S. Glock, D. Kühn, A. Lo, and D. Osthus, Hypergraph F-designs for arbitrary F, arXiv:1706.01800, (2017), 72 pages.
15.
go back to reference P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages. P. Keevash, The existence of designs, arXiv:1401.3665v2, (2018), 39 pages.
16.
go back to reference G. B. Khosrovshahi and R. Laue, t-designs with \(t\geq 3\), in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 79–101. G. B. Khosrovshahi and R. Laue, t-designs with \(t\geq 3\), in The CRC Handbook of Combinatorial Designs, 2nd edition, (Eds. C. J. Colbourn and J. H. Dinitz), CRC Press, Boca Raton (2007), 79–101.
17.
go back to reference R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in “Proc. Fifth British Combinatorial Conference” (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647–659, Congr. Numer. XV, 1975. R. M. Wilson, Decompositions of Complete Graphs into Subgraphs Isomorphic to a Given Graph, in “Proc. Fifth British Combinatorial Conference” (C. St. J. A. Nash-Williams and J. Sheehan, Eds.), pp. 647–659, Congr. Numer. XV, 1975.
Metadata
Title
Decomposing the -Fold Complete 3-Uniform Hypergraph into the Lines of the Pasch Configuration
Authors
Ryan C. Bunge
Skyler R. Dodson
Saad I. El-Zanati
Jacob Franzmeier
Dru Horne
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-62166-6_22

Premium Partner