Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2017 | OriginalPaper | Chapter

Decomposition Descent Method for Limit Optimization Problems

share
SHARE

Abstract

We consider a general limit optimization problem whose goal function need not be smooth in general and only approximation sequences are known instead of exact values of this function. We suggest to apply a two-level approach where approximate solutions of a sequence of mixed variational inequality problems are inserted in the iterative scheme of a selective decomposition descent method. Its convergence is attained under coercivity type conditions.
Literature
1.
go back to reference Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining Know. Disc. 2, 121–167 (1998) CrossRef Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining Know. Disc. 2, 121–167 (1998) CrossRef
2.
go back to reference Cevher, V., Becker, S., Schmidt, M.: Convex optimization for big data. Signal Process. Magaz. 31, 32–43 (2014) CrossRef Cevher, V., Becker, S., Schmidt, M.: Convex optimization for big data. Signal Process. Magaz. 31, 32–43 (2014) CrossRef
3.
go back to reference Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimization. IEEE Trans. Sig. Process. 63, 1874–1889 (2015) CrossRefMathSciNet Facchinei, F., Scutari, G., Sagratella, S.: Parallel selective algorithms for nonconvex big data optimization. IEEE Trans. Sig. Process. 63, 1874–1889 (2015) CrossRefMathSciNet
4.
5.
6.
go back to reference Konnov, I.V.: Sequential threshold control in descent splitting methods for decomposable optimization problems. Optim. Meth. Softw. 30, 1238–1254 (2015) CrossRefMATHMathSciNet Konnov, I.V.: Sequential threshold control in descent splitting methods for decomposable optimization problems. Optim. Meth. Softw. 30, 1238–1254 (2015) CrossRefMATHMathSciNet
7.
go back to reference Alart, P., Lemaire, B.: Penalization in non-classical convex programming via variational convergence. Math. Program. 51, 307–331 (1991) CrossRefMATH Alart, P., Lemaire, B.: Penalization in non-classical convex programming via variational convergence. Math. Program. 51, 307–331 (1991) CrossRefMATH
8.
9.
go back to reference Salmon, G., Nguyen, V.H., Strodiot, J.J.: Coupling the auxiliary problem principle and epiconvergence theory for solving general variational inequalities. J. Optim. Theor. Appl. 104, 629–657 (2000) CrossRefMATH Salmon, G., Nguyen, V.H., Strodiot, J.J.: Coupling the auxiliary problem principle and epiconvergence theory for solving general variational inequalities. J. Optim. Theor. Appl. 104, 629–657 (2000) CrossRefMATH
10.
go back to reference Konnov, I.V.: An inexact penalty method for non stationary generalized variational inequalities. Set-Valued Variat. Anal. 23, 239–248 (2015) CrossRefMATHMathSciNet Konnov, I.V.: An inexact penalty method for non stationary generalized variational inequalities. Set-Valued Variat. Anal. 23, 239–248 (2015) CrossRefMATHMathSciNet
11.
go back to reference Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) MATH Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983) MATH
12.
go back to reference Ermoliev, Y.M., Norkin, V.I., Wets, R.J.B.: The minimization of semicontinuous functions: mollifier subgradient. SIAM J. Contr. Optim. 33, 149–167 (1995) CrossRefMATHMathSciNet Ermoliev, Y.M., Norkin, V.I., Wets, R.J.B.: The minimization of semicontinuous functions: mollifier subgradient. SIAM J. Contr. Optim. 33, 149–167 (1995) CrossRefMATHMathSciNet
13.
go back to reference Czarnecki, M.-O., Rifford, L.: Approximation and regularization of lipschitz functions: convergence of the gradients. Trans. Amer. Math. Soc. 358, 4467–4520 (2006) CrossRefMATHMathSciNet Czarnecki, M.-O., Rifford, L.: Approximation and regularization of lipschitz functions: convergence of the gradients. Trans. Amer. Math. Soc. 358, 4467–4520 (2006) CrossRefMATHMathSciNet
14.
go back to reference Gwinner, J.: On the penalty method for constrained variational inequalities. In: Hiriart-Urruty, J.-B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algorithms, pp. 197–211. Marcel Dekker, New York (1981) Gwinner, J.: On the penalty method for constrained variational inequalities. In: Hiriart-Urruty, J.-B., Oettli, W., Stoer, J. (eds.) Optimization: Theory and Algorithms, pp. 197–211. Marcel Dekker, New York (1981)
15.
go back to reference Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. The Math. Stud. 63, 127–149 (1994) MATHMathSciNet Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. The Math. Stud. 63, 127–149 (1994) MATHMathSciNet
16.
go back to reference Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996) CrossRefMATH Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publishers, Dordrecht (1996) CrossRefMATH
17.
go back to reference Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B. 58, 267–288 (1996) MATHMathSciNet Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B. 58, 267–288 (1996) MATHMathSciNet
18.
go back to reference Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981) CrossRefMATH Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. Int. J. Syst. Sci. 12, 989–1000 (1981) CrossRefMATH
Metadata
Title
Decomposition Descent Method for Limit Optimization Problems
Author
Igor Konnov
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-69404-7_12

Premium Partner