Skip to main content
Top
Published in: Journal of Materials Science 16/2017

26-04-2017 | Energy materials

Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles

Authors: Arvind K. Bhakta, S. Detriche, P. Martis, R. J. Mascarenhas, J. Delhalle, Z. Mekhalif

Published in: Journal of Materials Science | Issue 16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple, reliable, reproducible, and efficient method to decorate multi-wall carbon nanotubes (MWCNTs) with iron nanoparticles is presented. Purified MWCNTs are first functionalized with mono- and tricarboxylic aryl diazonium salts generated in situ, then iron nanoparticles are formed using iron (II) acetate. Different characterization techniques (XPS, TEM, PXRD, and FESEM) are used to assess the properties of the resulting materials. Homogeneous distribution of iron nanoparticles on MWCNTs is evidenced with a Gaussian mean diameter of ∼2.7 ± 0.2 and ∼3.8 ± 0.3 nm for monocarboxylic and tricarboxylic functionalizations, respectively. Obtaining such a small size homogeneously distributed iron nanoparticles on MWCNTs is the main achievement of this work. Furthermore, nanoparticles based on tricarboxylic aryl diazonium functions, used for the first time to functionalize CNTs, are more crystalline and essentially in the metallic state. This opens interesting perspectives for nanotechnology. The present methodology is also applicable to large-scale preparation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
2.
go back to reference Chen P, Wu X, Lin J, Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRef Chen P, Wu X, Lin J, Tan KL (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93CrossRef
3.
go back to reference Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115:5159–5223CrossRef Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Zhang Y, Peng H (2015) Recent advancement of nanostructured carbon for energy applications. Chem Rev 115:5159–5223CrossRef
4.
5.
go back to reference Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477CrossRef Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386:474–477CrossRef
6.
go back to reference Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Gangloff L, Schnell J-P, Semet V, Thien Binh V, Groening O (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933–943CrossRef Milne WI, Teo KBK, Amaratunga GAJ, Legagneux P, Gangloff L, Schnell J-P, Semet V, Thien Binh V, Groening O (2004) Carbon nanotubes as field emission sources. J Mater Chem 14:933–943CrossRef
7.
go back to reference Li J, Zhang Q, Yang D, Tian J (2004) Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon 42:2263–2267CrossRef Li J, Zhang Q, Yang D, Tian J (2004) Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon 42:2263–2267CrossRef
8.
go back to reference Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRef Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625CrossRef
9.
go back to reference Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong L, Fischer AB, Gudibande SR, Jameison SH, Kenten JH, Leginus J, Leland JK, Massey RJ, Wohlstadter SJ (2003) Carbon nanotube based biosensor. Adv Mater 15:1184–1187CrossRef Wohlstadter JN, Wilbur JL, Sigal GB, Biebuyck HA, Billadeau MA, Dong L, Fischer AB, Gudibande SR, Jameison SH, Kenten JH, Leginus J, Leland JK, Massey RJ, Wohlstadter SJ (2003) Carbon nanotube based biosensor. Adv Mater 15:1184–1187CrossRef
10.
go back to reference Narimatsu K, Niidome Y, Nakashima N (2006) Pulsed-laser induced flocculation of carbon nanotubes solubilized by an anthracene-carrying polymer. Chem Phys Lett 429:488–491CrossRef Narimatsu K, Niidome Y, Nakashima N (2006) Pulsed-laser induced flocculation of carbon nanotubes solubilized by an anthracene-carrying polymer. Chem Phys Lett 429:488–491CrossRef
11.
go back to reference Miyako E, Nagata H, Hirano K, Hirotsu T (2008) Carbon nanotube–polymer composite for light-driven microthermal control. Angew Chem Int Ed 47:3610–3613CrossRef Miyako E, Nagata H, Hirano K, Hirotsu T (2008) Carbon nanotube–polymer composite for light-driven microthermal control. Angew Chem Int Ed 47:3610–3613CrossRef
12.
go back to reference Li S, Ma J, Huo H, Jin J, Ma J, Yang H (2016) Ionic liquids-noncovalently functionalized multi-walled carbon nanotubes decorated with palladium nanoparticles: a promising electrocatalyst for ethanol electrooxidation. Int J Hydrogen Energy 41:12358–12368CrossRef Li S, Ma J, Huo H, Jin J, Ma J, Yang H (2016) Ionic liquids-noncovalently functionalized multi-walled carbon nanotubes decorated with palladium nanoparticles: a promising electrocatalyst for ethanol electrooxidation. Int J Hydrogen Energy 41:12358–12368CrossRef
13.
go back to reference Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299CrossRef Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299CrossRef
14.
go back to reference Bathinapatla A, Kanchi S, Singh P, Sabela MI, Bisetty K (2015) Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. Biosens Bioelectron 67:200–207CrossRef Bathinapatla A, Kanchi S, Singh P, Sabela MI, Bisetty K (2015) Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. Biosens Bioelectron 67:200–207CrossRef
15.
go back to reference Zhang X, Wang G, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron 24:3395–3398CrossRef Zhang X, Wang G, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron 24:3395–3398CrossRef
16.
go back to reference Chen K-J, Pillai KC, Rick J, Pan C-J, Wang S-H, Liu C-C, Hwang B-J (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120–127CrossRef Chen K-J, Pillai KC, Rick J, Pan C-J, Wang S-H, Liu C-C, Hwang B-J (2012) Bimetallic PtM (M = Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33:120–127CrossRef
17.
go back to reference Karousis N, Tagmatarchis N (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef Karousis N, Tagmatarchis N (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef
18.
go back to reference Rahmam S, Mohamed NM, Sufian S (2014) Effect of acid treatment on the multiwalled carbon nanotubes. Mater Res Innov 18:196–199CrossRef Rahmam S, Mohamed NM, Sufian S (2014) Effect of acid treatment on the multiwalled carbon nanotubes. Mater Res Innov 18:196–199CrossRef
19.
go back to reference Morales-Lara F, Perez-Mendoza MJ, Altmajer-Vaz D, Garcia-Roman M, Melguizo M, Lopez-Garzon FJ, Domingo-Garcia M (2013) Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J Phys Chem C 117:11647–11655CrossRef Morales-Lara F, Perez-Mendoza MJ, Altmajer-Vaz D, Garcia-Roman M, Melguizo M, Lopez-Garzon FJ, Domingo-Garcia M (2013) Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J Phys Chem C 117:11647–11655CrossRef
20.
go back to reference Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580CrossRef Holzinger M, Abraham J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J Am Chem Soc 125:8566–8580CrossRef
21.
go back to reference Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761CrossRef Georgakilas V, Kordatos K, Prato M, Guldi DM, Holzinger M, Hirsch A (2002) Organic functionalization of carbon nanotubes. J Am Chem Soc 124:760–761CrossRef
22.
go back to reference Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRef Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98CrossRef
23.
go back to reference Wang Y, Malhotra SV, Owens FJ, Iqbal Z (2005) Electrochemical nitration of single-wall carbon nanotubes. Chem Phys Lett 407:68–72CrossRef Wang Y, Malhotra SV, Owens FJ, Iqbal Z (2005) Electrochemical nitration of single-wall carbon nanotubes. Chem Phys Lett 407:68–72CrossRef
24.
go back to reference Burghard M, Maroto A, Balasubramanian K, Assmus T, Forment-Aliaga A, Lee EJH, Weitz RT, Scolari M, Nan F, Mews A, Kern K (2007) Electrochemically modified single-walled carbon nanotubes. Phys Status Solidi (b) 244:4021–4025CrossRef Burghard M, Maroto A, Balasubramanian K, Assmus T, Forment-Aliaga A, Lee EJH, Weitz RT, Scolari M, Nan F, Mews A, Kern K (2007) Electrochemically modified single-walled carbon nanotubes. Phys Status Solidi (b) 244:4021–4025CrossRef
25.
go back to reference Matrab T, Chancolon J, L’hermite MM, Rouzaud J-N, Deniau G, Boudou J-P, Chehimi MM, Delamar M (2006) Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids Surf A Physicochem Eng Asp 287:217–221CrossRef Matrab T, Chancolon J, L’hermite MM, Rouzaud J-N, Deniau G, Boudou J-P, Chehimi MM, Delamar M (2006) Atom transfer radical polymerization (ATRP) initiated by aryl diazonium salts: a new route for surface modification of multiwalled carbon nanotubes by tethered polymer chains. Colloids Surf A Physicochem Eng Asp 287:217–221CrossRef
26.
go back to reference Mekki A, Ait-Touchente Z, Samanta S, Singh A, Mahmoud R, Chehimi MM, Aswal DK (2016) Polyaniline-wrapped ZnO nanorod composite films on diazonium-modified flexible plastic substrates. Macromol Chem Phys 217:1136–1148CrossRef Mekki A, Ait-Touchente Z, Samanta S, Singh A, Mahmoud R, Chehimi MM, Aswal DK (2016) Polyaniline-wrapped ZnO nanorod composite films on diazonium-modified flexible plastic substrates. Macromol Chem Phys 217:1136–1148CrossRef
27.
go back to reference Morais PC, Silva AS, Leite ES, Garg VK, Oliveira AC, Viali WR, Sartoratto PPC (2010) Tailoring magnetic nanoparticle for transformers application. J Nanosci Nanotechnol 10:1–4CrossRef Morais PC, Silva AS, Leite ES, Garg VK, Oliveira AC, Viali WR, Sartoratto PPC (2010) Tailoring magnetic nanoparticle for transformers application. J Nanosci Nanotechnol 10:1–4CrossRef
28.
go back to reference Su X, Zhan X, Tang F, Yao J, Wu J (2011) Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery. Curr Nanosci 7:37–46CrossRef Su X, Zhan X, Tang F, Yao J, Wu J (2011) Magnetic nanoparticles in brain disease diagnosis and targeting drug delivery. Curr Nanosci 7:37–46CrossRef
29.
go back to reference Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles, TrAC. Trends Anal Chem 62:28–36CrossRef Rocha-Santos TAP (2014) Sensors and biosensors based on magnetic nanoparticles, TrAC. Trends Anal Chem 62:28–36CrossRef
30.
go back to reference Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501CrossRef Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501CrossRef
31.
go back to reference Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8:2172–2179CrossRef Suslick KS, Hyeon T, Fang M (1996) Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem Mater 8:2172–2179CrossRef
32.
go back to reference Gai C, Zhang F, Lang Q, Liu T, Peng N, Liu Z (2017) Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B Environ 204:566–576CrossRef Gai C, Zhang F, Lang Q, Liu T, Peng N, Liu Z (2017) Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl Catal B Environ 204:566–576CrossRef
33.
go back to reference Yanez H JE, Wang Z, Lege S, Obst M, Roehler S, Burkhardt CJ, Zwiener C (2017) Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles. Water Res 108:78–85CrossRef Yanez H JE, Wang Z, Lege S, Obst M, Roehler S, Burkhardt CJ, Zwiener C (2017) Application and characterization of electroactive membranes based on carbon nanotubes and zerovalent iron nanoparticles. Water Res 108:78–85CrossRef
34.
go back to reference Ravikumar KVG, Dubey S, Pulimi M, Chandrasekaran N, Mukherjee A (2016) Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride. J Mol Liq 224:589–598CrossRef Ravikumar KVG, Dubey S, Pulimi M, Chandrasekaran N, Mukherjee A (2016) Scale-up synthesis of zero-valent iron nanoparticles and their applications for synergistic degradation of pollutants with sodium borohydride. J Mol Liq 224:589–598CrossRef
35.
go back to reference Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266CrossRef Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266CrossRef
36.
go back to reference Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247CrossRef Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247CrossRef
37.
go back to reference Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569CrossRef
38.
go back to reference Chen M, Yamamuro S, Farrell D, Majeticha SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93:7551–7553CrossRef Chen M, Yamamuro S, Farrell D, Majeticha SA (2003) Gold-coated iron nanoparticles for biomedical applications. J Appl Phys 93:7551–7553CrossRef
39.
go back to reference Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRef Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20CrossRef
40.
go back to reference Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063CrossRef Correa-Duarte MA, Grzelczak M, Salgueirino-Maceira V, Giersig M, Liz-Marzan LM, Farle M, Sierazdki K, Diaz R (2005) Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J Phys Chem B 109:19060–19063CrossRef
41.
go back to reference Wu H-Q, Yuan P-S, Xu H-Y, Xu D-M, Geng B-Y, Wei X-W (2006) Controllable synthesis and magnetic properties of Fe–Co alloy nanoparticles attached on carbon nanotubes. J Mater Sci 41:6889–6894. doi:10.1007/s10853-006-0935-5 CrossRef Wu H-Q, Yuan P-S, Xu H-Y, Xu D-M, Geng B-Y, Wei X-W (2006) Controllable synthesis and magnetic properties of Fe–Co alloy nanoparticles attached on carbon nanotubes. J Mater Sci 41:6889–6894. doi:10.​1007/​s10853-006-0935-5 CrossRef
42.
go back to reference Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRef Georgakilas V, Tzitzios V, Gournis D, Petridis D (2005) Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives. Chem Mater 17:1613–1617CrossRef
43.
go back to reference Jiang L, Gao L (2003) Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties. Chem Mater 15:2848–2853CrossRef Jiang L, Gao L (2003) Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties. Chem Mater 15:2848–2853CrossRef
44.
go back to reference Unger E, Duesberg GS, Liebau M, Graham AP, Seidel R, Kruepel F, Hoenlein W (2003) Decoration of multi-walled carbon nanotubes with noble- and transition-metal clusters and formation of CNT–CNT networks. Appl Phys A 77:735–738CrossRef Unger E, Duesberg GS, Liebau M, Graham AP, Seidel R, Kruepel F, Hoenlein W (2003) Decoration of multi-walled carbon nanotubes with noble- and transition-metal clusters and formation of CNT–CNT networks. Appl Phys A 77:735–738CrossRef
45.
go back to reference Stoffelbach F, Aqil A, Jerome C, Jerome R, Detrembleur C (2005) An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field. Chem Commun 36:4532–4533CrossRef Stoffelbach F, Aqil A, Jerome C, Jerome R, Detrembleur C (2005) An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field. Chem Commun 36:4532–4533CrossRef
46.
go back to reference Huiqun C, Meifang Z, Yaogang L (2006) Decoration of carbon nanotubes with iron oxide. J Solid State Chem 179:1208–1213CrossRef Huiqun C, Meifang Z, Yaogang L (2006) Decoration of carbon nanotubes with iron oxide. J Solid State Chem 179:1208–1213CrossRef
47.
go back to reference Wu H-Q, Cao Y-J, Yuan P-S, Xu H-Y, Wei X-W (2005) Controlled synthesis, structure and magnetic properties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes. Chem Phys Lett 406:148–153CrossRef Wu H-Q, Cao Y-J, Yuan P-S, Xu H-Y, Wei X-W (2005) Controlled synthesis, structure and magnetic properties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes. Chem Phys Lett 406:148–153CrossRef
48.
go back to reference Jang J, Yoon H (2003) Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv Mater 15:2088–2091CrossRef Jang J, Yoon H (2003) Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv Mater 15:2088–2091CrossRef
49.
go back to reference Cheng J, Zhang X, Ye Y (2006) Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes. J Solid State Chem 179:91–95CrossRef Cheng J, Zhang X, Ye Y (2006) Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes. J Solid State Chem 179:91–95CrossRef
50.
go back to reference Liu Q, Ren W, Chen Z-G, Liu B, Yu B, Li F, Cong H, Cheng H-M (2008) Direct synthesis of carbon nanotubes decorated with size controllable Fe nanoparticles encapsulated by graphitic layers. Carbon 46:1417–1423CrossRef Liu Q, Ren W, Chen Z-G, Liu B, Yu B, Li F, Cong H, Cheng H-M (2008) Direct synthesis of carbon nanotubes decorated with size controllable Fe nanoparticles encapsulated by graphitic layers. Carbon 46:1417–1423CrossRef
51.
go back to reference Zhu J, Luo Z, Wu S, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J Mater Chem 22:835–844CrossRef Zhu J, Luo Z, Wu S, Haldolaarachchige N, Young DP, Wei S, Guo Z (2012) Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity. J Mater Chem 22:835–844CrossRef
52.
go back to reference Brack N, Kappen P, Spencer MJS, Herries AIR, Rider AN (2016) Manipulation of carbon nanotube magnetism with metal-rich iron nanoparticles. J Mater Chem C 4:1215–1227CrossRef Brack N, Kappen P, Spencer MJS, Herries AIR, Rider AN (2016) Manipulation of carbon nanotube magnetism with metal-rich iron nanoparticles. J Mater Chem C 4:1215–1227CrossRef
53.
go back to reference Lassegue P, Noe L, Monthioux M, Caussat B (2015) Iron deposition on multi-walled carbon nanotubes by fluidized bed MOCVD for aeronautic applications. Phys Status Solidi C 12:861–868CrossRef Lassegue P, Noe L, Monthioux M, Caussat B (2015) Iron deposition on multi-walled carbon nanotubes by fluidized bed MOCVD for aeronautic applications. Phys Status Solidi C 12:861–868CrossRef
54.
go back to reference Brack N, Kappen P, Herries AIR, Trueman A, Rider AN (2014) Evolution of magnetic and structural properties during iron plating of carbon nanotubes. J Phys Chem C 118:13218–13227CrossRef Brack N, Kappen P, Herries AIR, Trueman A, Rider AN (2014) Evolution of magnetic and structural properties during iron plating of carbon nanotubes. J Phys Chem C 118:13218–13227CrossRef
55.
go back to reference Manasrah AD, Al-Mubaiyedh UA, Laui T, Ben-Mansour R, Al-Marri MJ, Almanassra IW, Abdala A, Atieh MA (2016) Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes. Appl Therm Eng 107:1008–1018CrossRef Manasrah AD, Al-Mubaiyedh UA, Laui T, Ben-Mansour R, Al-Marri MJ, Almanassra IW, Abdala A, Atieh MA (2016) Heat transfer enhancement of nanofluids using iron nanoparticles decorated carbon nanotubes. Appl Therm Eng 107:1008–1018CrossRef
56.
go back to reference Masipa PM, Magadzu T, Mkhondo B (2013) Decoration of multi-walled carbon nanotubes by metal nanoparticles and metal oxides using chemical evaporation method. S Afr J Chem 66:173–178 Masipa PM, Magadzu T, Mkhondo B (2013) Decoration of multi-walled carbon nanotubes by metal nanoparticles and metal oxides using chemical evaporation method. S Afr J Chem 66:173–178
57.
go back to reference Shanbedi M, Heris SZ, Amiri A, Eshghi H (2016) Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: a study on thermo-physical properties of ferromagnetic nanofluid. J Taiwan Inst Chem Eng 60:547–554CrossRef Shanbedi M, Heris SZ, Amiri A, Eshghi H (2016) Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: a study on thermo-physical properties of ferromagnetic nanofluid. J Taiwan Inst Chem Eng 60:547–554CrossRef
58.
go back to reference Detriche S, Devillers S, Seffer J-F, Nagy JB, Mekhalif Z, Delhalle J (2011) The use of water-soluble pyrene derivatives to probe the surface of carbon nanotubes. Carbon 49:2935–2943CrossRef Detriche S, Devillers S, Seffer J-F, Nagy JB, Mekhalif Z, Delhalle J (2011) The use of water-soluble pyrene derivatives to probe the surface of carbon nanotubes. Carbon 49:2935–2943CrossRef
59.
go back to reference Martis P, Venugopal BR, Seffer J-F, Delhalle J, Mekhalif Z (2011) Infrared irradiation controlled decoration of multiwalled carbon nanotubes with copper/copper oxide nanocrystals. Acta Mater 59:5040–5047CrossRef Martis P, Venugopal BR, Seffer J-F, Delhalle J, Mekhalif Z (2011) Infrared irradiation controlled decoration of multiwalled carbon nanotubes with copper/copper oxide nanocrystals. Acta Mater 59:5040–5047CrossRef
60.
go back to reference Venugopal BR, Detriche S, Delhalle J, Mekhalif Z (2012) Effect of infrared irradiation on immobilization of ZnO nanocrystals on multiwalled carbon nanotubes. J Nanopart Res 14:1079CrossRef Venugopal BR, Detriche S, Delhalle J, Mekhalif Z (2012) Effect of infrared irradiation on immobilization of ZnO nanocrystals on multiwalled carbon nanotubes. J Nanopart Res 14:1079CrossRef
61.
go back to reference Maho A, Detriche S, Delhalle J, Mekhalif Z (2013) Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces. Mater Sci Eng C 33:2686–2697CrossRef Maho A, Detriche S, Delhalle J, Mekhalif Z (2013) Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces. Mater Sci Eng C 33:2686–2697CrossRef
62.
go back to reference Maho A, Detriche S, Fonder G, Delhalle J, Mekhalif Z (2014) Electrochemical co-deposition of phosphonate-modified carbon nanotubes and tantalum on nitinol. ChemElectroChem 1:896–902CrossRef Maho A, Detriche S, Fonder G, Delhalle J, Mekhalif Z (2014) Electrochemical co-deposition of phosphonate-modified carbon nanotubes and tantalum on nitinol. ChemElectroChem 1:896–902CrossRef
63.
go back to reference Lhost O, Bouvy C, Detriche S, Delhalle J, Mekhalif Z, Vachaudez M, Devahif T (2014) Process for covalently grafting a carbonaceous material. WO2014/184330 A1 Lhost O, Bouvy C, Detriche S, Delhalle J, Mekhalif Z, Vachaudez M, Devahif T (2014) Process for covalently grafting a carbonaceous material. WO2014/184330 A1
64.
go back to reference Chungchamroenkit P, Chavadej S, Yanatatsaneejit U, Kitiyanan B (2008) Residue catalyst support removal and purification of carbon nanotubes by NaOH leaching and froth flotation. Sep Purif Technol 60:206–214CrossRef Chungchamroenkit P, Chavadej S, Yanatatsaneejit U, Kitiyanan B (2008) Residue catalyst support removal and purification of carbon nanotubes by NaOH leaching and froth flotation. Sep Purif Technol 60:206–214CrossRef
65.
go back to reference Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161CrossRef Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161CrossRef
66.
go back to reference Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef
67.
go back to reference Arrotin B, Delhalle J, Dubois P, Mespouille L, Mekhalif Z (2017) Electroassisted functionalization of nitinol surface, a powerful strategy for polymer coating through controlled radical surface initiation. Langmuir 33:2977–2985CrossRef Arrotin B, Delhalle J, Dubois P, Mespouille L, Mekhalif Z (2017) Electroassisted functionalization of nitinol surface, a powerful strategy for polymer coating through controlled radical surface initiation. Langmuir 33:2977–2985CrossRef
68.
go back to reference Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46:2003–2025CrossRef Hou P-X, Liu C, Cheng H-M (2008) Purification of carbon nanotubes. Carbon 46:2003–2025CrossRef
69.
go back to reference Dujardin E, Ebbesen TW, Krishnan A, Treacy MMJ (1998) Purification of single-shell nanotubes. Adv Mater 10:611–613CrossRef Dujardin E, Ebbesen TW, Krishnan A, Treacy MMJ (1998) Purification of single-shell nanotubes. Adv Mater 10:611–613CrossRef
70.
go back to reference Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodríguez-Macías FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 67:29–37CrossRef Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodríguez-Macías FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A 67:29–37CrossRef
71.
go back to reference Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107:13838–13842CrossRef Hu H, Zhao B, Itkis ME, Haddon RC (2003) Nitric acid purification of single-walled carbon nanotubes. J Phys Chem B 107:13838–13842CrossRef
72.
go back to reference Zhao X, Ohkohchi M, Inoue S, Suzuki T, Kadoya T, Ando Y (2006) Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diamond Relat Mater 15:1098–1102CrossRef Zhao X, Ohkohchi M, Inoue S, Suzuki T, Kadoya T, Ando Y (2006) Large-scale purification of single-wall carbon nanotubes prepared by electric arc discharge. Diamond Relat Mater 15:1098–1102CrossRef
73.
go back to reference Suzuki T, Suhama K, Zhao X, Inoue S, Nishikawa N, Ando Y (2007) Purification of single-wall carbon nanotubes produced by arc plasma jet method. Diamond Relat Mater 16:1116–1120CrossRef Suzuki T, Suhama K, Zhao X, Inoue S, Nishikawa N, Ando Y (2007) Purification of single-wall carbon nanotubes produced by arc plasma jet method. Diamond Relat Mater 16:1116–1120CrossRef
74.
go back to reference Wang Y, Shan H, Hauge RH, Pasquali M, Smalley RE (2007) A highly selective, one-pot purification method for singlewalled carbon nanotubes. J. Phys. Chem. B 111:1249–1252CrossRef Wang Y, Shan H, Hauge RH, Pasquali M, Smalley RE (2007) A highly selective, one-pot purification method for singlewalled carbon nanotubes. J. Phys. Chem. B 111:1249–1252CrossRef
75.
go back to reference Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRef Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRef
76.
go back to reference Colomer J-F, Piedigrosso P, Fonseca A, Nagy JB (1999) Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth Met 103:2482–2483CrossRef Colomer J-F, Piedigrosso P, Fonseca A, Nagy JB (1999) Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth Met 103:2482–2483CrossRef
77.
go back to reference Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion 141–142:203–209CrossRef Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion 141–142:203–209CrossRef
78.
go back to reference Su S-H, Chiang W-T, Lin C-C, Yokoyama M (2008) Multi-wall carbon nanotubes: purification, morphology and field emission performance. Phys E 40:2322–2326CrossRef Su S-H, Chiang W-T, Lin C-C, Yokoyama M (2008) Multi-wall carbon nanotubes: purification, morphology and field emission performance. Phys E 40:2322–2326CrossRef
79.
go back to reference Sadegh H, Shahryari-ghoshekandi R, Kazemi M (2014) Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int Nano Lett 4:129–135CrossRef Sadegh H, Shahryari-ghoshekandi R, Kazemi M (2014) Study in synthesis and characterization of carbon nanotubes decorated by magnetic iron oxide nanoparticles. Int Nano Lett 4:129–135CrossRef
80.
go back to reference Zhang Q, Zhu M, Zhang Q, Li Y, Wang H (2009) The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos Sci Technol 69:633–638CrossRef Zhang Q, Zhu M, Zhang Q, Li Y, Wang H (2009) The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos Sci Technol 69:633–638CrossRef
81.
go back to reference Cun-ku D, Xin L, Yan Z, Jing-yao Q, Yun-fang Y (2009) Fe3O4 nanoparticles decorated multi-walled carbon nanotubes and their sorption properties. Chem Res Chin Univ 25:936–940 Cun-ku D, Xin L, Yan Z, Jing-yao Q, Yun-fang Y (2009) Fe3O4 nanoparticles decorated multi-walled carbon nanotubes and their sorption properties. Chem Res Chin Univ 25:936–940
82.
go back to reference Shanbedi M, Heris SZ, Amiri A, Eshghi H (2016) Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: a study on thermo-physical properties of ferromagnetic nanofluid. J Taiwan Inst Chem Eng 60:547–554CrossRef Shanbedi M, Heris SZ, Amiri A, Eshghi H (2016) Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: a study on thermo-physical properties of ferromagnetic nanofluid. J Taiwan Inst Chem Eng 60:547–554CrossRef
83.
go back to reference Masoomi-Godarzi S, Khodadadi AA, Vesali-Naseh M, Mortazavi Y (2014) Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J Electrochem Soc 161:B19–B25CrossRef Masoomi-Godarzi S, Khodadadi AA, Vesali-Naseh M, Mortazavi Y (2014) Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe3O4 nanoparticles. J Electrochem Soc 161:B19–B25CrossRef
84.
go back to reference Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209CrossRef Lv X, Xu J, Jiang G, Xu X (2011) Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere 85:1204–1209CrossRef
85.
go back to reference Jiao W, Feng Z, Liu Y, Jiang H (2016) Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron. J Nanopart Res 18(198):1–9 Jiao W, Feng Z, Liu Y, Jiang H (2016) Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron. J Nanopart Res 18(198):1–9
86.
go back to reference Singhal RK, Gangadhar B, Basu H, Manisha V, Naidu GRK, Reddy AVR (2012) Remediation of malathion contaminated soil using zero valent iron nano-particles. Am J Anal Chem 3:76–82CrossRef Singhal RK, Gangadhar B, Basu H, Manisha V, Naidu GRK, Reddy AVR (2012) Remediation of malathion contaminated soil using zero valent iron nano-particles. Am J Anal Chem 3:76–82CrossRef
87.
go back to reference Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRef Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRef
Metadata
Title
Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles
Authors
Arvind K. Bhakta
S. Detriche
P. Martis
R. J. Mascarenhas
J. Delhalle
Z. Mekhalif
Publication date
26-04-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1100-z

Other articles of this Issue 16/2017

Journal of Materials Science 16/2017 Go to the issue

Premium Partners