Skip to main content
Top

2023 | OriginalPaper | Chapter

Deep Active Learning for Detection of Mercury’s Bow Shock and Magnetopause Crossings

Authors : Sahib Julka, Nikolas Kirschstein, Michael Granitzer, Alexander Lavrukhin, Ute Amerstorfer

Published in: Machine Learning and Knowledge Discovery in Databases

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accurate and timely detection of bow shock and magnetopause crossings is essential for understanding the dynamics of a planet’s magnetosphere. However, for Mercury, due to the variable nature of its magnetosphere, this remains a challenging task. Existing approaches based on geometric equations only provide average boundary shapes, and can be hard to generalise to environments with variable conditions. On the other hand, data-driven methods require large amounts of annotated data to account for variations, which can scale up the costs quickly. We propose to solve this problem with machine learning. To this end, we introduce a suitable dataset, prepared by processing raw measurements from NASA’s MESSENGER (MErcury Surface, Space Environment, GEochemistry, and Ranging) mission and design a five-class supervised learning problem. We perform an architectural search to find a suitable model, and report our best model, a Convolutional Recurrent Neural Network (CRNN), achieves a macro F1 score of 0.82 with accuracies of approximately 80% and 88% on the bow shock and magnetopause crossings, respectively. Further, we introduce an approach based on active learning that includes only the most informative orbits from the MESSENGER dataset measured by Shannon entropy. We observe that by employing this technique, the model is able to obtain near maximal information gain by training on just two Mercury years worth of data, which is about 10% of the entire dataset. This has the potential to significantly reduce the need for manual labeling. This work sets the ground for future machine learning endeavors in this direction and may be highly relevant to future missions such as BepiColombo, which is expected to enter orbit around Mercury in December 2025.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The apoapsis of an elliptic orbit is the point farthest away from the planet.
 
2
The position of the event in the window should not matter.
 
3
\( \triangle ^{n-1} {:}{=}\{(p_1, p_2, \dots , p_n) \in \mathbb {R}^n \mid \forall i: p_i \ge 0, \sum _{i = 1}^{n}p_i = 1\} \subseteq [0, 1]^n\).
 
4
All plots for the entire test set are made available in the code repository linked in Sect. 1.
 
Literature
1.
go back to reference Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Y., Kalegaev, V.V.: Modelling of the electromagnetic field in the interplanetary space and in the earth’s magnetosphere. Space Sci. Rev. 107(1), 7–26 (2003)CrossRef Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Y., Kalegaev, V.V.: Modelling of the electromagnetic field in the interplanetary space and in the earth’s magnetosphere. Space Sci. Rev. 107(1), 7–26 (2003)CrossRef
2.
go back to reference Alexeev, I.I., et al.: Mercury’s magnetospheric magnetic field after the first two messenger flybys. Icarus 209(1), 23–39 (2010)CrossRef Alexeev, I.I., et al.: Mercury’s magnetospheric magnetic field after the first two messenger flybys. Icarus 209(1), 23–39 (2010)CrossRef
3.
go back to reference Alexeev, I., et al.: A global magnetic model of saturn’s magnetosphere and a comparison with cassini soi data. Geophys. Res. Lett. 33(8), 1–4 (2006)CrossRef Alexeev, I., et al.: A global magnetic model of saturn’s magnetosphere and a comparison with cassini soi data. Geophys. Res. Lett. 33(8), 1–4 (2006)CrossRef
4.
go back to reference Amiriparian, S., et al.: Recognition of echolalic autistic child vocalisations utilising convolutional recurrent neural networks (2018) Amiriparian, S., et al.: Recognition of echolalic autistic child vocalisations utilising convolutional recurrent neural networks (2018)
5.
go back to reference Amiriparian, S., Cummins, N., Julka, S., Schuller, B.: Deep convolutional recurrent neural network for rare acoustic event detection. In: Proceedings of DAGA, pp. 1522–1525 (2018) Amiriparian, S., Cummins, N., Julka, S., Schuller, B.: Deep convolutional recurrent neural network for rare acoustic event detection. In: Proceedings of DAGA, pp. 1522–1525 (2018)
6.
go back to reference Anderson, B.J., et al.: The magnetic field of mercury. Space Sci. Rev. 152(1), 307–339 (2010)CrossRef Anderson, B.J., et al.: The magnetic field of mercury. Space Sci. Rev. 152(1), 307–339 (2010)CrossRef
7.
go back to reference Belenkaya, E., Bobrovnikov, S.Y., Alexeev, I., Kalegaev, V., Cowley, S.: A model of jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 53(9), 863–872 (2005)CrossRef Belenkaya, E., Bobrovnikov, S.Y., Alexeev, I., Kalegaev, V., Cowley, S.: A model of jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 53(9), 863–872 (2005)CrossRef
8.
go back to reference Benkhoff, J., et al.: Bepicolombo-comprehensive exploration of mercury: mission overview and science goals. Planet. Space Sci. 58(1–2), 2–20 (2010)CrossRef Benkhoff, J., et al.: Bepicolombo-comprehensive exploration of mercury: mission overview and science goals. Planet. Space Sci. 58(1–2), 2–20 (2010)CrossRef
9.
go back to reference Fairfield, D.H.: Average and unusual locations of the earth’s magnetopause and bow shock. J. Geophys. Res. 76(28), 6700–6716 (1971)CrossRef Fairfield, D.H.: Average and unusual locations of the earth’s magnetopause and bow shock. J. Geophys. Res. 76(28), 6700–6716 (1971)CrossRef
10.
go back to reference Haaland, S., et al.: Characteristics of the flank magnetopause: mms results. J. Geophys. Res.: Space Phys. 125(3), e2019JA027623 (2020) Haaland, S., et al.: Characteristics of the flank magnetopause: mms results. J. Geophys. Res.: Space Phys. 125(3), e2019JA027623 (2020)
11.
go back to reference Jelínek, K., Němeček, Z., Šafránková, J.: A new approach to magnetopause and bow shock modeling based on automated region identification. J. Geophys. Res.: Space Phys. 117(A5) (2012) Jelínek, K., Němeček, Z., Šafránková, J.: A new approach to magnetopause and bow shock modeling based on automated region identification. J. Geophys. Res.: Space Phys. 117(A5) (2012)
12.
go back to reference Johnson, C.L., et al.: Messenger observations of mercury’s magnetic field structure. J. Geophys. Res.: Planets 117(E12) (2012) Johnson, C.L., et al.: Messenger observations of mercury’s magnetic field structure. J. Geophys. Res.: Planets 117(E12) (2012)
13.
go back to reference Kraeft, S.K.: Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system. Clin. Cancer Res. 6(2), 434–442 (2000) Kraeft, S.K.: Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system. Clin. Cancer Res. 6(2), 434–442 (2000)
14.
go back to reference Lin, R., Zhang, X., Liu, S., Wang, Y., Gong, J.: A three-dimensional asymmetric magnetopause model. J. Geophys. Res.: Space Phys. 115(A4) (2010) Lin, R., Zhang, X., Liu, S., Wang, Y., Gong, J.: A three-dimensional asymmetric magnetopause model. J. Geophys. Res.: Space Phys. 115(A4) (2010)
15.
go back to reference Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Fontaine, D.: Automatic detection of the earth bow shock and magnetopause from in-situ data with machine learning. In: Annales Geophysicae Discussions, pp. 1–22 (2019) Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Fontaine, D.: Automatic detection of the earth bow shock and magnetopause from in-situ data with machine learning. In: Annales Geophysicae Discussions, pp. 1–22 (2019)
16.
go back to reference Nikolaou, N., et al.: Lessons learned from the 1st ariel machine learning challenge: correcting transiting exoplanet light curves for stellar spots. arXiv preprint arXiv:2010.15996 (2020) Nikolaou, N., et al.: Lessons learned from the 1st ariel machine learning challenge: correcting transiting exoplanet light curves for stellar spots. arXiv preprint arXiv:​2010.​15996 (2020)
17.
go back to reference Philpott, L.C., Johnson, C.L., Anderson, B.J., Winslow, R.M.: The shape of mercury’s magnetopause: the picture from messenger magnetometer observations and future prospects for bepicolombo. J. Geophys. Res.: Space Phys. 125(5), e2019JA027544 (2020) Philpott, L.C., Johnson, C.L., Anderson, B.J., Winslow, R.M.: The shape of mercury’s magnetopause: the picture from messenger magnetometer observations and future prospects for bepicolombo. J. Geophys. Res.: Space Phys. 125(5), e2019JA027544 (2020)
18.
go back to reference Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)CrossRef Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)CrossRef
19.
20.
go back to reference Shue, J.H., et al.: A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res.: Space Phys. 102(A5), 9497–9511 (1997)CrossRef Shue, J.H., et al.: A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res.: Space Phys. 102(A5), 9497–9511 (1997)CrossRef
21.
go back to reference Sibeck, D.G., Lopez, R., Roelof, E.C.: Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res.: Space Phys. 96(A4), 5489–5495 (1991)CrossRef Sibeck, D.G., Lopez, R., Roelof, E.C.: Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res.: Space Phys. 96(A4), 5489–5495 (1991)CrossRef
22.
go back to reference Slavin, J.A.: Mercury’s magnetosphere. Adv. Space Res. 33(11), 1859–1874 (2004)CrossRef Slavin, J.A.: Mercury’s magnetosphere. Adv. Space Res. 33(11), 1859–1874 (2004)CrossRef
23.
go back to reference Wang, Y., et al.: A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. J. Geophys. Res.: Space Phys. 118(5), 2173–2184 (2013)MathSciNetCrossRef Wang, Y., et al.: A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. J. Geophys. Res.: Space Phys. 118(5), 2173–2184 (2013)MathSciNetCrossRef
24.
go back to reference Winslow, R.M., et al.: Mercury’s magnetopause and bow shock from messenger magnetometer observations. J. Geophys. Res.: Space Phys. 118(5), 2213–2227 (2013)CrossRef Winslow, R.M., et al.: Mercury’s magnetopause and bow shock from messenger magnetometer observations. J. Geophys. Res.: Space Phys. 118(5), 2213–2227 (2013)CrossRef
25.
go back to reference Zhong, J.: Mercury’s three-dimensional asymmetric magnetopause. J. Geophys. Res.: Space Phys. 120(9), 7658–7671 (2015)CrossRef Zhong, J.: Mercury’s three-dimensional asymmetric magnetopause. J. Geophys. Res.: Space Phys. 120(9), 7658–7671 (2015)CrossRef
26.
go back to reference Zurbuchen, T.H., et al.: Messenger observations of the spatial distribution of planetary ions near mercury. Science 333(6051), 1862–1865 (2011)CrossRef Zurbuchen, T.H., et al.: Messenger observations of the spatial distribution of planetary ions near mercury. Science 333(6051), 1862–1865 (2011)CrossRef
Metadata
Title
Deep Active Learning for Detection of Mercury’s Bow Shock and Magnetopause Crossings
Authors
Sahib Julka
Nikolas Kirschstein
Michael Granitzer
Alexander Lavrukhin
Ute Amerstorfer
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-26412-2_28

Premium Partner