Deep Archetypal Analysis | springerprofessional.de Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Deep Archetypal Analysis

Authors : Sebastian Mathias Keller, Maxim Samarin, Mario Wieser, Volker Roth

Published in: Pattern Recognition

Publisher: Springer International Publishing

share
SHARE

Abstract

Deep Archetypal Analysis (DeepAA) generates latent representations of high-dimensional datasets in terms of intuitively understandable basic entities called archetypes. The proposed method extends linear Archetypal Analysis (AA), an unsupervised method to represent multivariate data points as convex combinations of extremal data points. Unlike the original formulation, Deep AA is generative and capable of handling side information. In addition, our model provides the ability for data-driven representation learning which reduces the dependence on expert knowledge. We empirically demonstrate the applicability of our approach by exploring the chemical space of small organic molecules. In doing so, we employ the archetype constraint to learn two different latent archetype representations for the same dataset, with respect to two chemical properties. This type of supervised exploration marks a distinct starting point and let us steer de novo molecular design.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Appendix
Available only for authorised users
Footnotes
1
Note that \(i=1..m\) (and not up to n), which reflects that deep neural networks usually require batch-wise training with batch size m.
 
Literature
2.
go back to reference Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. OUP, Oxford (2010) Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. OUP, Oxford (2010)
6.
go back to reference Cabeza, L.F., et al.: Lithium in thermal energy storage: a state-of-the-art review. Renew. Sustain. Energy Rev. 42, 1106–1112 (2015) CrossRef Cabeza, L.F., et al.: Lithium in thermal energy storage: a state-of-the-art review. Renew. Sustain. Energy Rev. 42, 1106–1112 (2015) CrossRef
9.
go back to reference van Dijk, D., Burkhardt, D., Amodio, M., Tong, A., Wolf, G., Krishnaswamy, S.: Finding archetypal spaces for data using neural networks. arXiv preprint arXiv:​1901.​09078 (2019) van Dijk, D., Burkhardt, D., Amodio, M., Tong, A., Wolf, G., Krishnaswamy, S.: Finding archetypal spaces for data using neural networks. arXiv preprint arXiv:​1901.​09078 (2019)
11.
go back to reference Hart, Y., et al.: Inferring biological tasks using pareto analysis of high-dimensional data. Nat. Methods 12(3), 233 (2015) CrossRef Hart, Y., et al.: Inferring biological tasks using pareto analysis of high-dimensional data. Nat. Methods 12(3), 233 (2015) CrossRef
12.
go back to reference Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1133–1141. IEEE (2017) Hou, X., Shen, L., Sun, K., Qiu, G.: Deep feature consistent variational autoencoder. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1133–1141. IEEE (2017)
14.
go back to reference Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. In: International Conference on Learning Representations (ICLR) (2017) Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. In: International Conference on Learning Representations (ICLR) (2017)
16.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. abs/1412.6980 (2014) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. abs/1412.6980 (2014)
17.
go back to reference Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 8–13 December 2014, Montreal, pp. 3581–3589 (2014) Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, 8–13 December 2014, Montreal, pp. 3581–3589 (2014)
18.
go back to reference Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013) Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013)
19.
go back to reference Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015 Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015
20.
go back to reference Mørup, M., Hansen, L.K.: Archetypal analysis for machine learning and data mining. Neurocomputing 80, 54–63 (2012) CrossRef Mørup, M., Hansen, L.K.: Archetypal analysis for machine learning and data mining. Neurocomputing 80, 54–63 (2012) CrossRef
23.
go back to reference Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1 (2014) Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1 (2014)
24.
go back to reference Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1530–1538. PMLR, Lille, 07–09 July 2015 Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 37, pp. 1530–1538. PMLR, Lille, 07–09 July 2015
25.
go back to reference Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models 32(2), 1278–1286 (2014) Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models 32(2), 1278–1286 (2014)
29.
go back to reference Steinbeck, C., Han, Y.Q., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003) CrossRef Steinbeck, C., Han, Y.Q., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The Chemistry Development Kit (CDK): an open-source Java library for chemo- and bioinformatics. J. Chem. Inf. Comput. Sci. 43(2), 493–500 (2003) CrossRef
30.
go back to reference Tinoco, I.: Physical Chemistry: Principles and Applications in Biological Sciences. No. S. 229-313 in Physical Chemistry: Principles and Applications in Biological Sciences. Prentice Hall, Englewood Cliffs (2002) Tinoco, I.: Physical Chemistry: Principles and Applications in Biological Sciences. No. S. 229-313 in Physical Chemistry: Principles and Applications in Biological Sciences. Prentice Hall, Englewood Cliffs (2002)
32.
go back to reference Wieczorek, A., Wieser, M., Murezzan, D., Roth, V.: Learning sparse latent representations with the deep copula information bottleneck. In: International Conference on Learning Representations (ICLR) (2018) Wieczorek, A., Wieser, M., Murezzan, D., Roth, V.: Learning sparse latent representations with the deep copula information bottleneck. In: International Conference on Learning Representations (ICLR) (2018)
33.
go back to reference Wynen, D., Schmid, C., Mairal, J.: Unsupervised learning of artistic styles with archetypal style analysis. In: Advances in Neural Information Processing Systems, pp. 6584–6593 (2018) Wynen, D., Schmid, C., Mairal, J.: Unsupervised learning of artistic styles with archetypal style analysis. In: Advances in Neural Information Processing Systems, pp. 6584–6593 (2018)
Metadata
Title
Deep Archetypal Analysis
Authors
Sebastian Mathias Keller
Maxim Samarin
Mario Wieser
Volker Roth
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-33676-9_12

Premium Partner