Skip to main content
Top

2025 | OriginalPaper | Chapter

Deep Cognitive Learning for Enhanced Pneumonia Detection: Employing CNNs for Precise Classification

Authors : Rishit Pandey, Archisa Singh, Vaibhav Kapoor, Sushruta Mishra, Shalini Goel, Rajeev Sobti

Published in: Innovative Computing and Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

When we talk about holistic pulmonic health, pneumonia still stands as a grave condition which is identified by inflammation of lungs. Consequently, the person undergoes a rise in body temperature, cough, and pain in the torso. It is vital that this condition is identified and treated upon in the fetal years as it can help in making remarkable recovery. This study provides us a model of deep neural data science based on convolutional neural networks. It helps in distinction of pneumonia from usual X-ray images. This model has proven to show impeccable exactness and highlight the strong points. The design and validation part is being constantly customized to identify symptoms of pneumonia separating it from conventional lung illnesses. The excellent accuracy rates paint a gripping canvas in the field of analysis of images for medical purposes. This design is especially vital in conditions involving pneumonia because immediate treatment works in correspondence with the betterment of the patient's well-being. This model in action will supply healthcare professionals with exact discovery. This expansion focuses on the transformational scope of including artificial intelligence into the medical industry to better patient’s well-being. Our study is an impactful step in positive direction toward healthcare with an agenda of having attainable alternatives for before time pneumonia identification.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fine, M. J., Auble, T. E., Yealy, D. M., Hanusa, B. H., Weissfeld, L. A., Singer, D. E., Coley, C. M., Marrie, T. J., & Kapoor, W. N. (1997). A prediction rule to identify low-risk patients with community-acquired pneumonia. New England Journal of Medicine, 336(4), 243–250.CrossRef Fine, M. J., Auble, T. E., Yealy, D. M., Hanusa, B. H., Weissfeld, L. A., Singer, D. E., Coley, C. M., Marrie, T. J., & Kapoor, W. N. (1997). A prediction rule to identify low-risk patients with community-acquired pneumonia. New England Journal of Medicine, 336(4), 243–250.CrossRef
2.
go back to reference Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., & Shpanskaya, K., et al. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., & Shpanskaya, K., et al. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:​1711.​05225
4.
go back to reference Ibrahim, A. U., Ozsoz, M., Serte, S., Al-Turjman, F., & Yakoi, P. S. (2021). Pneumonia classification using deep learning from chest x-ray images during covid-19. Cognitive Computation, 1–13. Ibrahim, A. U., Ozsoz, M., Serte, S., Al-Turjman, F., & Yakoi, P. S. (2021). Pneumonia classification using deep learning from chest x-ray images during covid-19. Cognitive Computation, 1–13.
5.
go back to reference Stephen, O., Sain, M., Maduh, U. J., & Jeong, D.-U., et al. (2019). An efficient deep learning approach to pneumonia classification in healthcare. Journal of Healthcare Engineering, 2019. Stephen, O., Sain, M., Maduh, U. J., & Jeong, D.-U., et al. (2019). An efficient deep learning approach to pneumonia classification in healthcare. Journal of Healthcare Engineering, 2019.
6.
go back to reference Elshennawy, N. M., & Ibrahim, D. M. (2020). Deep-pneumonia framework using deep learning models based on chest x-ray images. Diagnostics, 10(9), 649.CrossRef Elshennawy, N. M., & Ibrahim, D. M. (2020). Deep-pneumonia framework using deep learning models based on chest x-ray images. Diagnostics, 10(9), 649.CrossRef
7.
go back to reference Panwar, A., Yadav, R., Mishra, K., & Gupta, S. (2021). Deep learning techniques for the real-time detection of covid19 and pneumonia using chest radiographs. In IEEE EUROCON 2021—19th international conference on smart technologies (pp. 250–253). IEEE. Panwar, A., Yadav, R., Mishra, K., & Gupta, S. (2021). Deep learning techniques for the real-time detection of covid19 and pneumonia using chest radiographs. In IEEE EUROCON 2021—19th international conference on smart technologies (pp. 250–253). IEEE.
8.
go back to reference Verma, G., & Prakash, S. (2020). Pneumonia classification using deep learning in healthcare. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(4), 1715–1723.CrossRef Verma, G., & Prakash, S. (2020). Pneumonia classification using deep learning in healthcare. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(4), 1715–1723.CrossRef
10.
go back to reference Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
11.
go back to reference Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.CrossRef Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.CrossRef
Metadata
Title
Deep Cognitive Learning for Enhanced Pneumonia Detection: Employing CNNs for Precise Classification
Authors
Rishit Pandey
Archisa Singh
Vaibhav Kapoor
Sushruta Mishra
Shalini Goel
Rajeev Sobti
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_16