Skip to main content
Top

2024 | OriginalPaper | Chapter

Deep-Control of Memory via Stochastic Optimal Control and Deep Learning

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this survey work, we introduce Stochastic Differential Delay Equations and their impacts on Stochastic Optimal Control problems. We observe time delay in the dynamics of a state process that may correspond to inertia or memory in a financial system. For such systems, we demonstrate two special approaches to handle delayed control problems by applying the Dynamic Programming Principle. Moreover, we clarify the technical challenges rising as a consequence of the conflict between the path-dependent, infinite-dimensional nature of the problem and the necessity of the Markov property. Furthermore, we present two different Deep Learning algorithms to solve targeted delayed control tasks and illustrate the results for a complete memory portfolio optimization problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bayraktar, E., Keller, C.: Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275, 2096–2161 (2018)MathSciNetCrossRef Bayraktar, E., Keller, C.: Path-dependent Hamilton–Jacobi equations in infinite dimensions. J. Funct. Anal. 275, 2096–2161 (2018)MathSciNetCrossRef
2.
go back to reference Blechschmidt, J., Ernst, O.: Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitteilungen 44, e202100006 (2021)MathSciNetCrossRef Blechschmidt, J., Ernst, O.: Three ways to solve partial differential equations with neural networks—A review. GAMM-Mitteilungen 44, e202100006 (2021)MathSciNetCrossRef
3.
go back to reference Castro, J.: The Kolmogorov infinite dimensional equation in a Hilbert space via deep learning methods. Preprint. ArXiv:2206.06451 (2022) Castro, J.: The Kolmogorov infinite dimensional equation in a Hilbert space via deep learning methods. Preprint. ArXiv:2206.06451 (2022)
4.
go back to reference Chang, M., Pang, T., Pemy, M.: Finite difference approximations for stochastic control systems with delay. Stoch. Anal. Appl. 26, 451–470 (2008)MathSciNetCrossRef Chang, M., Pang, T., Pemy, M.: Finite difference approximations for stochastic control systems with delay. Stoch. Anal. Appl. 26, 451–470 (2008)MathSciNetCrossRef
5.
go back to reference Chang, M., Pang, T., Pemy, M.: Optimal control of stochastic functional differential equations with a bounded memory. Stochastics Int. J. Probab. Stoch. Process. 80, 69–96 (2008)MathSciNetCrossRef Chang, M., Pang, T., Pemy, M.: Optimal control of stochastic functional differential equations with a bounded memory. Stochastics Int. J. Probab. Stoch. Process. 80, 69–96 (2008)MathSciNetCrossRef
6.
go back to reference Chen, C., Sun, D., Chang, C.: Numerical solution of time-delayed optimal control problems by iterative dynamic programming. Optim. Control Appl. Methods 21, 91–105 (2000)MathSciNetCrossRef Chen, C., Sun, D., Chang, C.: Numerical solution of time-delayed optimal control problems by iterative dynamic programming. Optim. Control Appl. Methods 21, 91–105 (2000)MathSciNetCrossRef
7.
go back to reference Crandall, M., Lions, P.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)MathSciNetCrossRef Crandall, M., Lions, P.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)MathSciNetCrossRef
8.
go back to reference Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. Off. J. Inst. Math. Stat. 44, 1212–1253 (2016)MathSciNet Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab. Off. J. Inst. Math. Stat. 44, 1212–1253 (2016)MathSciNet
9.
go back to reference Elsanosi, I., Larssen, B.: Optimal consumption under partial observations for a stochastic system with delay. Preprint Series. Pure Mathematics. Nb. No/URN: NBN: No-8076 (2001) Elsanosi, I., Larssen, B.: Optimal consumption under partial observations for a stochastic system with delay. Preprint Series. Pure Mathematics. Nb. No/URN: NBN: No-8076 (2001)
10.
go back to reference Elsanosi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stochastics Int. J. Probab. Stoch. Process. 71, 69–89 (2000)MathSciNet Elsanosi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stochastics Int. J. Probab. Stoch. Process. 71, 69–89 (2000)MathSciNet
11.
go back to reference Fabbri, G., Gozzi, F., Swiech, A.: Stochastic Optimal Control in Infinite Dimension. Probability and Stochastic Modelling. Springer (2017)CrossRef Fabbri, G., Gozzi, F., Swiech, A.: Stochastic Optimal Control in Infinite Dimension. Probability and Stochastic Modelling. Springer (2017)CrossRef
12.
go back to reference Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stoch. 15, 421–459 (2011)MathSciNetCrossRef Federico, S.: A stochastic control problem with delay arising in a pension fund model. Finance Stoch. 15, 421–459 (2011)MathSciNetCrossRef
13.
go back to reference Federico, S., Tankov, P.: Finite-dimensional representations for controlled diffusions with delay. Appl. Math. Optim. 71, 165–194 (2015)MathSciNetCrossRef Federico, S., Tankov, P.: Finite-dimensional representations for controlled diffusions with delay. Appl. Math. Optim. 71, 165–194 (2015)MathSciNetCrossRef
14.
go back to reference Federico, S., Goldys, B., Gozzi, F.: HJB equations for the optimal control of differential equations with delays and state constraints, I: regularity of viscosity solutions. SIAM J. Control Optim. 48, 4910–4937 (2010) Federico, S., Goldys, B., Gozzi, F.: HJB equations for the optimal control of differential equations with delays and state constraints, I: regularity of viscosity solutions. SIAM J. Control Optim. 48, 4910–4937 (2010)
15.
go back to reference Feo, F., Federico, S., Świech, A.: Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models. Preprint. ArXiv:2302.08809 (2023) Feo, F., Federico, S., Świech, A.: Optimal control of stochastic delay differential equations and applications to path-dependent financial and economic models. Preprint. ArXiv:2302.08809 (2023)
16.
go back to reference Fischer, M., Nappo, G.: Time discretisation and rate of convergence for the optimal control of continuous-time stochastic systems with delay. Appl. Math. Optim. 57, 177–206 (2008)MathSciNetCrossRef Fischer, M., Nappo, G.: Time discretisation and rate of convergence for the optimal control of continuous-time stochastic systems with delay. Appl. Math. Optim. 57, 177–206 (2008)MathSciNetCrossRef
17.
go back to reference Fischer, M., Reiss, M.: Discretisation of stochastic control problems for continuous time dynamics with delay. J. Comput. Appl. Math. 205, 969–981 (2007)MathSciNetCrossRef Fischer, M., Reiss, M.: Discretisation of stochastic control problems for continuous time dynamics with delay. J. Comput. Appl. Math. 205, 969–981 (2007)MathSciNetCrossRef
18.
go back to reference Fleming, W., Soner, H.: Controlled Markov Processes and Viscosity Solutions. Springer Science & Business Media (2006) Fleming, W., Soner, H.: Controlled Markov Processes and Viscosity Solutions. Springer Science & Business Media (2006)
19.
go back to reference Fouque, J., Zhang, Z.: Deep learning methods for mean field control problems with delay. Front. Appl. Math. Stat. 6, 11 (2020)CrossRef Fouque, J., Zhang, Z.: Deep learning methods for mean field control problems with delay. Front. Appl. Math. Stat. 6, 11 (2020)CrossRef
20.
go back to reference Germain, M., Pham, H., Warin, X.: Neural networks-based algorithms for stochastic control and PDEs in finance. Preprint. ArXiv:2101.08068 (2021) Germain, M., Pham, H., Warin, X.: Neural networks-based algorithms for stochastic control and PDEs in finance. Preprint. ArXiv:2101.08068 (2021)
21.
go back to reference Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing. SIAM J. Control Optim. 55, 2981–3012 (2017)MathSciNetCrossRef Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing. SIAM J. Control Optim. 55, 2981–3012 (2017)MathSciNetCrossRef
22.
go back to reference Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control II: Verification theorem and optimal feedbacks. SIAM J. Control Optim. 55, 3013–3038 (2017)MathSciNetCrossRef Gozzi, F., Masiero, F.: Stochastic optimal control with delay in the control II: Verification theorem and optimal feedbacks. SIAM J. Control Optim. 55, 3013–3038 (2017)MathSciNetCrossRef
23.
go back to reference Gozzi, F., Masiero, F.: Errata: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing, and stochastic optimal control with delay in the control II: verification theorem and optimal feedbacks. SIAM J. Control Optim. 59, 3096–3101 (2021)MathSciNetCrossRef Gozzi, F., Masiero, F.: Errata: Stochastic optimal control with delay in the control I: Solving the HJB equation through partial smoothing, and stochastic optimal control with delay in the control II: verification theorem and optimal feedbacks. SIAM J. Control Optim. 59, 3096–3101 (2021)MathSciNetCrossRef
24.
go back to reference Gozzi, F., Roma, S., Marinelli, C.: 13 Stochastic Optimal Control of Delay Equations Arising in Advertising Models. Stochastic Partial Differential Equations and Applications-VII, pp. 133 (2005) Gozzi, F., Roma, S., Marinelli, C.: 13 Stochastic Optimal Control of Delay Equations Arising in Advertising Models. Stochastic Partial Differential Equations and Applications-VII, pp. 133 (2005)
25.
go back to reference Gozzi, F., Marinelli, C., Savin, S.: On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects. J. Optim. Theory Appl. 142, 291–321 (2009)MathSciNetCrossRef Gozzi, F., Marinelli, C., Savin, S.: On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects. J. Optim. Theory Appl. 142, 291–321 (2009)MathSciNetCrossRef
26.
go back to reference Han, J., Hu, R.: Recurrent neural networks for stochastic control problems with delay. Math. Control Signals Syst. 33, 775–795 (2021)MathSciNetCrossRef Han, J., Hu, R.: Recurrent neural networks for stochastic control problems with delay. Math. Control Signals Syst. 33, 775–795 (2021)MathSciNetCrossRef
27.
go back to reference Han, J., Jentzen, A., et al.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)MathSciNetCrossRef Han, J., Jentzen, A., et al.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5, 349–380 (2017)MathSciNetCrossRef
28.
go back to reference Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRef Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRef
29.
go back to reference Ishii, H., Lions, P.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations 83, 26–78 (1990)MathSciNetCrossRef Ishii, H., Lions, P.: Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Differential Equations 83, 26–78 (1990)MathSciNetCrossRef
30.
go back to reference Kim, J., Yang, I.: Hamilton-Jacobi-Bellman equations for q-learning in continuous time. In: Learning For Dynamics and Control, pp. 739–748 (2020) Kim, J., Yang, I.: Hamilton-Jacobi-Bellman equations for q-learning in continuous time. In: Learning For Dynamics and Control, pp. 739–748 (2020)
31.
go back to reference Kushner, H.: Numerical approximations for stochastic systems with delays in the state and control. Stochastics Int. J. Probab. Stoch. Process. 78, 343–376 (2006)MathSciNetCrossRef Kushner, H.: Numerical approximations for stochastic systems with delays in the state and control. Stochastics Int. J. Probab. Stoch. Process. 78, 343–376 (2006)MathSciNetCrossRef
32.
go back to reference Kushner, H.: Numerical Methods for Controlled Stochastic Delay Systems. Springer (2008) Kushner, H.: Numerical Methods for Controlled Stochastic Delay Systems. Springer (2008)
33.
go back to reference Larssen, B.: Dynamic programming in stochastic control of systems with delay. Stochastics Int. J. Probab. Stoch. Process. 74, 651–673 (2002)MathSciNet Larssen, B.: Dynamic programming in stochastic control of systems with delay. Stochastics Int. J. Probab. Stoch. Process. 74, 651–673 (2002)MathSciNet
34.
go back to reference Larssen, B., Risebro, N.: When are HJB-equations in Stochastic Control of Delay Systems Finite Dimensional? Taylor & Francis (2003) Larssen, B., Risebro, N.: When are HJB-equations in Stochastic Control of Delay Systems Finite Dimensional? Taylor & Francis (2003)
35.
go back to reference Mohammed, S.: Stochastic Functional Differential Equations. Pitman Advanced Publishing Program (1984) Mohammed, S.: Stochastic Functional Differential Equations. Pitman Advanced Publishing Program (1984)
36.
go back to reference Mohammed, S.: Stochastic differential systems with memory: theory, examples and applications. In: Stochastic Analysis and Related Topics VI: Proceedings of the Sixth Oslo—Silivri Workshop Geilo 1996, pp. 1–77 (1998)MathSciNet Mohammed, S.: Stochastic differential systems with memory: theory, examples and applications. In: Stochastic Analysis and Related Topics VI: Proceedings of the Sixth Oslo—Silivri Workshop Geilo 1996, pp. 1–77 (1998)MathSciNet
37.
go back to reference Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput. 43, A1221–A1247 (2021)MathSciNetCrossRef Nakamura-Zimmerer, T., Gong, Q., Kang, W.: Adaptive deep learning for high-dimensional Hamilton–Jacobi–Bellman equations. SIAM J. Sci. Comput. 43, A1221–A1247 (2021)MathSciNetCrossRef
38.
go back to reference Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer (2007) Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer (2007)
39.
go back to reference Øksendal, B., Sulem, A., Zhang, T.: Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv. Appl. Probab. 43, 572–596 (2011)MathSciNetCrossRef Øksendal, B., Sulem, A., Zhang, T.: Optimal control of stochastic delay equations and time-advanced backward stochastic differential equations. Adv. Appl. Probab. 43, 572–596 (2011)MathSciNetCrossRef
40.
go back to reference Pang, T., Hussain, A.: A stochastic portfolio optimization model with complete memory. Stoch. Anal. Appl. 35, 742–766 (2017)MathSciNetCrossRef Pang, T., Hussain, A.: A stochastic portfolio optimization model with complete memory. Stoch. Anal. Appl. 35, 742–766 (2017)MathSciNetCrossRef
41.
42.
go back to reference Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Springer Science & Business Media (2009) Pham, H.: Continuous-time Stochastic Control and Optimization with Financial Applications. Springer Science & Business Media (2009)
43.
go back to reference Savku, E.: Memory and Anticipation: Two main theorems for Markov regime-switching stochastic processes. Preprint. ArXiv:2302.13890 (2023) Savku, E.: Memory and Anticipation: Two main theorems for Markov regime-switching stochastic processes. Preprint. ArXiv:2302.13890 (2023)
44.
go back to reference Savku, E., Weber, G.: A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 179, 696–721 (2018)MathSciNetCrossRef Savku, E., Weber, G.: A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance. J. Optim. Theory Appl. 179, 696–721 (2018)MathSciNetCrossRef
45.
go back to reference Savku, E., Weber, G.: A regime-switching model with applications to finance: Markovian and Non-Markovian cases. In: Dynamic Economic Problems with Regime Switches, pp. 287–309 (2021) Savku, E., Weber, G.: A regime-switching model with applications to finance: Markovian and Non-Markovian cases. In: Dynamic Economic Problems with Regime Switches, pp. 287–309 (2021)
46.
go back to reference Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955 (2020)CrossRef Van Houdt, G., Mosquera, C., Nápoles, G.: A review on the long short-term memory model. Artif. Intell. Rev. 53, 5929–5955 (2020)CrossRef
47.
go back to reference Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer Science & Business Media (1999) Yong, J., Zhou, X.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer Science & Business Media (1999)
Metadata
Title
Deep-Control of Memory via Stochastic Optimal Control and Deep Learning
Author
Emel Savku
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_16

Premium Partners