Skip to main content
Top

2018 | OriginalPaper | Chapter

Deep Convolutional Networks for Automated Detection of Epileptogenic Brain Malformations

Authors : Ravnoor S. Gill, Seok-Jun Hong, Fatemeh Fadaie, Benoit Caldairou, Boris C. Bernhardt, Carmen Barba, Armin Brandt, Vanessa C. Coelho, Ludovico d’Incerti, Matteo Lenge, Mira Semmelroch, Fabrice Bartolomei, Fernando Cendes, Francesco Deleo, Renzo Guerrini, Maxime Guye, Graeme Jackson, Andreas Schulze-Bonhage, Tommaso Mansi, Neda Bernasconi, Andrea Bernasconi

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Focal cortical dysplasia (FCD) is a prevalent surgically-amenable epileptogenic malformation of cortical development. On MRI, FCD typically presents with cortical thickening, hyperintensity, and blurring of the gray-white matter interface. These changes may be visible to the naked eye, or subtle and be easily overlooked. Despite advances in MRI analytics, current surface-based algorithms fail to detect FCD in 50% of cases. Moreover, arduous data pre-processing and specialized expertise preclude widespread use. Here we propose a novel algorithm that harnesses feature-learning capability of convolutional neural networks (CNNs) with minimal data pre-processing. Our classifier, trained on a patch-based augmented dataset derived from patients with histologically-validated FCD operates directly on MRI voxels to distinguish the lesion from healthy tissue. The algorithm was trained and cross-validated on multimodal MRI data from a single site (S1) and evaluated on independent data from S1 and six other sites worldwide (S2–S7; 3 scanner manufacturers and 2 field strengths) for a total of 107 subjects. The classifier showed excellent sensitivity (S1: 87%, 35/40 lesions detected; S2–S7: 91%, 61/67 lesions detected) and specificity (S1: 95%, no findings in 36/38 healthy controls; 90%, no findings in 57/63 disease controls). Easy implementation, minimal pre-processing, high performance and generalizability make this classifier an ideal platform for large-scale clinical use, particularly in “MRI-negative” FCD.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Blümcke, I., et al.: The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 52, 158–174 (2011)CrossRef Blümcke, I., et al.: The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc task force of the ILAE diagnostic methods commission. Epilepsia 52, 158–174 (2011)CrossRef
2.
go back to reference Bernasconi, A., Bernasconi, N., Bernhardt, B.C., Schrader, D.: Advances in MRI for “cryptogenic” epilepsies. Nat. Rev. Neurol. 7, 99–108 (2011)CrossRef Bernasconi, A., Bernasconi, N., Bernhardt, B.C., Schrader, D.: Advances in MRI for “cryptogenic” epilepsies. Nat. Rev. Neurol. 7, 99–108 (2011)CrossRef
3.
go back to reference Kini, L.G., Gee, J.C., Litt, B.: Computational analysis in epilepsy neuroimaging: a survey of features and methods. NeuroImage: Clin. 11, 515–529 (2016) Kini, L.G., Gee, J.C., Litt, B.: Computational analysis in epilepsy neuroimaging: a survey of features and methods. NeuroImage: Clin. 11, 515–529 (2016)
4.
go back to reference Hong, S.-J., Kim, H., Schrader, D., Bernasconi, N., Bernhardt, B.C., Bernasconi, A.: Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 83, 48–55 (2014)CrossRef Hong, S.-J., Kim, H., Schrader, D., Bernasconi, N., Bernhardt, B.C., Bernasconi, A.: Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology 83, 48–55 (2014)CrossRef
5.
go back to reference Adler, S., et al.: Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage: Clin. 14, 18–27 (2017) Adler, S., et al.: Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage: Clin. 14, 18–27 (2017)
7.
go back to reference Tan, Y.-L., et al.: Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. Neuroimage 166, 10–18 (2017)CrossRef Tan, Y.-L., et al.: Quantitative surface analysis of combined MRI and PET enhances detection of focal cortical dysplasias. Neuroimage 166, 10–18 (2017)CrossRef
8.
go back to reference LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)CrossRef
9.
go back to reference Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
10.
go back to reference Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)CrossRef Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998)CrossRef
11.
go back to reference Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Brain development cooperative group: unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54, 313–327 (2011)CrossRef Fonov, V., Evans, A.C., Botteron, K., Almli, C.R., McKinstry, R.C., Collins, D.L.: Brain development cooperative group: unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54, 313–327 (2011)CrossRef
12.
go back to reference Sisodiya, S.M., Fauser, S., Cross, J.H., Thom, M.: Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol. 8, 830–843 (2009)CrossRef Sisodiya, S.M., Fauser, S., Cross, J.H., Thom, M.: Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol. 8, 830–843 (2009)CrossRef
13.
go back to reference Hong, S.-J., et al.: Multimodal MRI profiling of focal cortical dysplasia type II. Neurology 88, 734–742 (2017)CrossRef Hong, S.-J., et al.: Multimodal MRI profiling of focal cortical dysplasia type II. Neurology 88, 734–742 (2017)CrossRef
14.
go back to reference Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRef
15.
go back to reference Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 155, 159–168 (2017)CrossRef Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage 155, 159–168 (2017)CrossRef
Metadata
Title
Deep Convolutional Networks for Automated Detection of Epileptogenic Brain Malformations
Authors
Ravnoor S. Gill
Seok-Jun Hong
Fatemeh Fadaie
Benoit Caldairou
Boris C. Bernhardt
Carmen Barba
Armin Brandt
Vanessa C. Coelho
Ludovico d’Incerti
Matteo Lenge
Mira Semmelroch
Fabrice Bartolomei
Fernando Cendes
Francesco Deleo
Renzo Guerrini
Maxime Guye
Graeme Jackson
Andreas Schulze-Bonhage
Tommaso Mansi
Neda Bernasconi
Andrea Bernasconi
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00931-1_56

Premium Partner