Skip to main content
Top

2019 | OriginalPaper | Chapter

Deep Intrinsic Image Decomposition Using Joint Parallel Learning

Authors : Yuan Yuan, Bin Sheng, Ping Li, Lei Bi, Jinman Kim, Enhua Wu

Published in: Advances in Computer Graphics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Intrinsic image decomposition is a highly ill-posed problem in computer vision referring to extract albedo and shading from an image. In this paper, we regard it as an image-to-image translation issue and propose a novel thought, which makes use of parallel convolutional neural networks (ParCNN) to learn albedo and shading with different spatial features and data distributions, respectively. At the same time, the energy is preserved as much as possible under the constraint of image reconstruction loss shared by the two networks. Moreover, we add the gradient prior based on the traditional image formation process into the loss function, which can lead to a performance improvement of our basic learning model by jointing advantages of the physically-based method and the data-driven method. We choose MPI Sintel dataset for model training and testing. Quantitative and qualitative evaluation results outperform the state-of-the-art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Grosse, R.B., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2335–2342 (2009) Grosse, R.B., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2335–2342 (2009)
4.
go back to reference Lettry, L., Vanhoey, K., Gool, L.V.: DARN: a deep adversarial residual network for intrinsic image decomposition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1359–1367 (2018) Lettry, L., Vanhoey, K., Gool, L.V.: DARN: a deep adversarial residual network for intrinsic image decomposition. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1359–1367 (2018)
5.
go back to reference Narihira, T., Maire, M., Yu, S.X.: Direct intrinsics: learning albedo-shading decomposition by convolutional regression. In: Computer Science, pp. 2992–2992 (2015) Narihira, T., Maire, M., Yu, S.X.: Direct intrinsics: learning albedo-shading decomposition by convolutional regression. In: Computer Science, pp. 2992–2992 (2015)
Metadata
Title
Deep Intrinsic Image Decomposition Using Joint Parallel Learning
Authors
Yuan Yuan
Bin Sheng
Ping Li
Lei Bi
Jinman Kim
Enhua Wu
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_28

Premium Partner