Skip to main content
Top
Published in:

01-12-2023 | Original Article

Deep learning-based credibility conversation detection approaches from social network

Authors: Imen Fadhli, Lobna Hlaoua, Mohamed Nazih Omri

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the evolution of social media and its impact on information dissemination, particularly the challenges posed by fake news and misinformation. It introduces a deep learning-based approach to detect credibility in Twitter conversations, combining textual features and user features using CNN-LSTM models. The proposed model, CreCDA, integrates sentiment analysis to enhance credibility detection. The study is validated using the PHEME dataset and compares the performance with existing methods, demonstrating the effectiveness of the novel approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abbasi M-A, Liu H (2013) Measuring user credibility in social media. In: International conference on social computing, behavioral-cultural modeling, and prediction, Springer. pp 441–448 Abbasi M-A, Liu H (2013) Measuring user credibility in social media. In: International conference on social computing, behavioral-cultural modeling, and prediction, Springer. pp 441–448
go back to reference Abu-Salih B, Wongthongtham P, Chan KY, Zhu D (2019) Credsat: credibility ranking of users in big social data incorporating semantic analysis and temporal factor. J Inf Sci 45(2):259–280CrossRef Abu-Salih B, Wongthongtham P, Chan KY, Zhu D (2019) Credsat: credibility ranking of users in big social data incorporating semantic analysis and temporal factor. J Inf Sci 45(2):259–280CrossRef
go back to reference Ahmad T (2022) Efficient fake news detection mechanism using enhanced deep learning model. Appl Sci 12(3):1743CrossRef Ahmad T (2022) Efficient fake news detection mechanism using enhanced deep learning model. Appl Sci 12(3):1743CrossRef
go back to reference Al-Khalifa HS, Al-Eidan RM (2011) An experimental system for measuring the credibility of news content in twitter. Int J Web Inf Syst Al-Khalifa HS, Al-Eidan RM (2011) An experimental system for measuring the credibility of news content in twitter. Int J Web Inf Syst
go back to reference Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econ Perspect 31(2):211–236CrossRef Allcott H, Gentzkow M (2017) Social media and fake news in the 2016 election. J Econ Perspect 31(2):211–236CrossRef
go back to reference Alrubaian M, Al-Qurishi M, Alamri A, Al-Rakhami M, Hassan MM, Fortino G (2018) Credibility in online social networks: a survey. IEEE Access 7:2828–2855CrossRef Alrubaian M, Al-Qurishi M, Alamri A, Al-Rakhami M, Hassan MM, Fortino G (2018) Credibility in online social networks: a survey. IEEE Access 7:2828–2855CrossRef
go back to reference Alrubaian M, Al-Qurishi M, Omar S, Mostafa, MA (2021) Deeptrust: a deep learning approach for measuring social media users trustworthiness. arXiv preprint arXiv:2101.07725 Alrubaian M, Al-Qurishi M, Omar S, Mostafa, MA (2021) Deeptrust: a deep learning approach for measuring social media users trustworthiness. arXiv preprint arXiv:​2101.​07725
go back to reference Al-Sharawnh J, Sinnappan S, Williams M-A (2013) Credibility-based twitter social network analysis. In: Asia-Pacific web conference, Springer. pp 323–331 Al-Sharawnh J, Sinnappan S, Williams M-A (2013) Credibility-based twitter social network analysis. In: Asia-Pacific web conference, Springer. pp 323–331
go back to reference Azer M, Taha M, Zayed HH, Gadallah M (2021) Credibility detection on twitter news using machine learning approach. Int J Intell Syst Appl 13(3):1–10 Azer M, Taha M, Zayed HH, Gadallah M (2021) Credibility detection on twitter news using machine learning approach. Int J Intell Syst Appl 13(3):1–10
go back to reference Bharti (2020) Automatic rumour detection model on social media. In: 2020 sixth international conference on parallel, distributed and grid computing (PDGC), pp 367–371 Bharti (2020) Automatic rumour detection model on social media. In: 2020 sixth international conference on parallel, distributed and grid computing (PDGC), pp 367–371
go back to reference Bonifazi G, Breve B, Cirillo S, Corradini E, Virgili L (2022) Investigating the covid-19 vaccine discussions on twitter through a multilayer network-based approach. Inf Process Manag 59(6):103095CrossRef Bonifazi G, Breve B, Cirillo S, Corradini E, Virgili L (2022) Investigating the covid-19 vaccine discussions on twitter through a multilayer network-based approach. Inf Process Manag 59(6):103095CrossRef
go back to reference Castillo C, Mendoza M, Poblete B (2011) Information credibility on twitter. In: Proceedings of the 20th international conference on world wide web, pp 675–684 Castillo C, Mendoza M, Poblete B (2011) Information credibility on twitter. In: Proceedings of the 20th international conference on world wide web, pp 675–684
go back to reference Choudhary N, Singh R, Bindlish I, Shrivastava M (2018) Neural network architecture for credibility assessment of textual claims. arXiv preprint arXiv:1803.10547 Choudhary N, Singh R, Bindlish I, Shrivastava M (2018) Neural network architecture for credibility assessment of textual claims. arXiv preprint arXiv:​1803.​10547
go back to reference Corradini E, Nocera A, Ursino D, Virgili L (2021) Investigating the phenomenon of nsfw posts in reddit. Inf Sci 566:140–164CrossRef Corradini E, Nocera A, Ursino D, Virgili L (2021) Investigating the phenomenon of nsfw posts in reddit. Inf Sci 566:140–164CrossRef
go back to reference El Ballouli R, El-Hajj W, Ghandour A, Elbassuoni S, Hajj H, Shaban K (2017) Cat: credibility analysis of arabic content on twitter. In: Proceedings of the third Arabic natural language processing workshop, pp 62–71 El Ballouli R, El-Hajj W, Ghandour A, Elbassuoni S, Hajj H, Shaban K (2017) Cat: credibility analysis of arabic content on twitter. In: Proceedings of the third Arabic natural language processing workshop, pp 62–71
go back to reference Fadhli I, Hlaoua L, Omri MN (2022) Sentiment analysis csam model to discover pertinent conversations in twitter microblogs Fadhli I, Hlaoua L, Omri MN (2022) Sentiment analysis csam model to discover pertinent conversations in twitter microblogs
go back to reference Gammoudi F, Sendi M, Omri MN (2022) A survey on social media influence environment and influencers identification. Soc Netw Anal Min 12(1):1–19CrossRef Gammoudi F, Sendi M, Omri MN (2022) A survey on social media influence environment and influencers identification. Soc Netw Anal Min 12(1):1–19CrossRef
go back to reference Gangireddy SCR, Long C, Chakraborty T (2020) Unsupervised fake news detection: A graph-based approach. In: Proceedings of the 31st ACM conference on hypertext and social media, pp 75–83 Gangireddy SCR, Long C, Chakraborty T (2020) Unsupervised fake news detection: A graph-based approach. In: Proceedings of the 31st ACM conference on hypertext and social media, pp 75–83
go back to reference Giachanou A, Rosso P, Crestani F (2021) The impact of emotional signals on credibility assessment. J Assoc Inf Sci Technol 72(9):1117–1132CrossRef Giachanou A, Rosso P, Crestani F (2021) The impact of emotional signals on credibility assessment. J Assoc Inf Sci Technol 72(9):1117–1132CrossRef
go back to reference Goodman J, Carmichael F (2020) Coronavirus: Bill gates ‘microchip’ conspiracy theory and other vaccine claims fact-checked. BBC News 30 Goodman J, Carmichael F (2020) Coronavirus: Bill gates ‘microchip’ conspiracy theory and other vaccine claims fact-checked. BBC News 30
go back to reference Gupta A, Lamba H, Kumaraguru P, Joshi A (2013) Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd international conference on world wide web, pp 729–736 Gupta A, Lamba H, Kumaraguru P, Joshi A (2013) Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd international conference on world wide web, pp 729–736
go back to reference Gupta M, Zhao P, Han J (2012) Evaluating event credibility on twitter. In: Proceedings of the 2012 SIAM international conference on data mining, SIAM. pp 153–164 Gupta M, Zhao P, Han J (2012) Evaluating event credibility on twitter. In: Proceedings of the 2012 SIAM international conference on data mining, SIAM. pp 153–164
go back to reference Hamdi T, Slimi H, Bounhas I, Slimani Y (2020) A hybrid approach for fake news detection in twitter based on user features and graph embedding. In: International conference on distributed computing and internet technology, Springer. pp 266–280 Hamdi T, Slimi H, Bounhas I, Slimani Y (2020) A hybrid approach for fake news detection in twitter based on user features and graph embedding. In: International conference on distributed computing and internet technology, Springer. pp 266–280
go back to reference Hassan N, Gomaa W, Khoriba G, Haggag M (2020) Credibility detection in twitter using word n-gram analysis and supervised machine learning techniques. Int J Intell Eng Syst 13(1):291–300 Hassan N, Gomaa W, Khoriba G, Haggag M (2020) Credibility detection in twitter using word n-gram analysis and supervised machine learning techniques. Int J Intell Eng Syst 13(1):291–300
go back to reference Ito J, Song J, Toda H, Koike Y, Oyama S (2015) Assessment of tweet credibility with lda features. In: Proceedings of the 24th international conference on world wide web, pp 953–958 Ito J, Song J, Toda H, Koike Y, Oyama S (2015) Assessment of tweet credibility with lda features. In: Proceedings of the 24th international conference on world wide web, pp 953–958
go back to reference Jaho (2014) Alethiometer: a framework for assessing trustworthiness and content validity in social media. In: Proceedings of the 23rd international conference on world wide web, pp 749–752 Jaho (2014) Alethiometer: a framework for assessing trustworthiness and content validity in social media. In: Proceedings of the 23rd international conference on world wide web, pp 749–752
go back to reference Kawabe T, Namihira Y, Suzuki K, Nara M, Sakurai Y, Tsuruta S, Knauf R (2015) Tweet credibility analysis evaluation by improving sentiment dictionary. In: 2015 IEEE congress on evolutionary computation (CEC), pp 2354–2361 Kawabe T, Namihira Y, Suzuki K, Nara M, Sakurai Y, Tsuruta S, Knauf R (2015) Tweet credibility analysis evaluation by improving sentiment dictionary. In: 2015 IEEE congress on evolutionary computation (CEC), pp 2354–2361
go back to reference Kim J, Hastak M (2018) Social network analysis: characteristics of online social networks after a disaster. Int J Inf Manag 38(1):86–96CrossRef Kim J, Hastak M (2018) Social network analysis: characteristics of online social networks after a disaster. Int J Inf Manag 38(1):86–96CrossRef
go back to reference Kotteti CMM, Dong, X, Qian L (2018) Multiple time-series data analysis for rumor detection on social media. In: 2018 IEEE international conference on big data (Big Data), pp 4413–4419 Kotteti CMM, Dong, X, Qian L (2018) Multiple time-series data analysis for rumor detection on social media. In: 2018 IEEE international conference on big data (Big Data), pp 4413–4419
go back to reference Metzger MJ, Flanagin AJ, Eyal K, Lemus DR, McCann RM (2003) Credibility for the 21st century: integrating perspectives on source, message, and media credibility in the contemporary media environment. Ann Int Commun Assoc 27(1):293–335 Metzger MJ, Flanagin AJ, Eyal K, Lemus DR, McCann RM (2003) Credibility for the 21st century: integrating perspectives on source, message, and media credibility in the contemporary media environment. Ann Int Commun Assoc 27(1):293–335
go back to reference Middleton S (2015) Extracting attributed verification and debunking reports from social media: mediaeval-2015 trust and credibility analysis of image and video Middleton S (2015) Extracting attributed verification and debunking reports from social media: mediaeval-2015 trust and credibility analysis of image and video
go back to reference Omri MN, Omri F (2022) Dynamic editing distance-based extracting relevant information approach from social networks. Int J Comput Netw Inf Secur Omri MN, Omri F (2022) Dynamic editing distance-based extracting relevant information approach from social networks. Int J Comput Netw Inf Secur
go back to reference Ouni S, Fkih F, Omri MN (2022) Bert-and cnn-based tobeat approach for unwelcome tweets detection. Soc Netw Anal Min 12(1):1–19CrossRef Ouni S, Fkih F, Omri MN (2022) Bert-and cnn-based tobeat approach for unwelcome tweets detection. Soc Netw Anal Min 12(1):1–19CrossRef
go back to reference Park, et al (2018) Plusemo2vec at semeval-2018 task 1: exploiting emotion knowledge from emoji and# hashtags. arXiv preprint arXiv:1804.08280 Park, et al (2018) Plusemo2vec at semeval-2018 task 1: exploiting emotion knowledge from emoji and# hashtags. arXiv preprint arXiv:​1804.​08280
go back to reference Qiu Q, Xu R, Liu B, Gui L, Zhou Y (2014) Credibility estimation of stock comments based on publisher and information uncertainty evaluation. In: International conference on machine learning and cybernetics, Springer. pp 400–408 Qiu Q, Xu R, Liu B, Gui L, Zhou Y (2014) Credibility estimation of stock comments based on publisher and information uncertainty evaluation. In: International conference on machine learning and cybernetics, Springer. pp 400–408
go back to reference Qureshi KA, Sabih M (2021) Un-compromised credibility: Social media based multi-class hate speech classification for text. IEEE Access 9:109465–109477CrossRef Qureshi KA, Sabih M (2021) Un-compromised credibility: Social media based multi-class hate speech classification for text. IEEE Access 9:109465–109477CrossRef
go back to reference Qureshi KA, Malick RAS, Sabih M (2021) Social media and microblogs credibility: identification, theory driven framework, and recommendation. IEEE Access 9:137744–137781CrossRef Qureshi KA, Malick RAS, Sabih M (2021) Social media and microblogs credibility: identification, theory driven framework, and recommendation. IEEE Access 9:137744–137781CrossRef
go back to reference Schouten AP, Janssen L, Verspaget M (2020) Celebrity vs. influencer endorsements in advertising: the role of identification, credibility, and product-endorser fit. Int J Advert 39(2):258–281CrossRef Schouten AP, Janssen L, Verspaget M (2020) Celebrity vs. influencer endorsements in advertising: the role of identification, credibility, and product-endorser fit. Int J Advert 39(2):258–281CrossRef
go back to reference Sharma K (2019) Combating fake news: a survey on identification and mitigation techniques. ACM Trans Intell Syst Technol (TIST) 10(3):1–42MathSciNetCrossRef Sharma K (2019) Combating fake news: a survey on identification and mitigation techniques. ACM Trans Intell Syst Technol (TIST) 10(3):1–42MathSciNetCrossRef
go back to reference Silva, et al (2020) Predicting misinformation and engagement in covid-19 twitter discourse in the first months of the outbreak. arXiv preprint arXiv:2012.02164 Silva, et al (2020) Predicting misinformation and engagement in covid-19 twitter discourse in the first months of the outbreak. arXiv preprint arXiv:​2012.​02164
go back to reference Widyantoro D, Wibisono Y (2014) Modeling credibility assessment and explanation for tweets based on sentiment analysis. J Theor Appl Inf Technol 70(3):540–548 Widyantoro D, Wibisono Y (2014) Modeling credibility assessment and explanation for tweets based on sentiment analysis. J Theor Appl Inf Technol 70(3):540–548
go back to reference Yamaguchi Y, Takahashi T, Amagasa T, Kitagawa H (2010) Turank: Twitter user ranking based on user-tweet graph analysis. In: International conference on web information systems engineering, Springer. pp 240–253 Yamaguchi Y, Takahashi T, Amagasa T, Kitagawa H (2010) Turank: Twitter user ranking based on user-tweet graph analysis. In: International conference on web information systems engineering, Springer. pp 240–253
go back to reference Zhang Y, Tiwari P, Song D, Mao X, Wang P, Li X, Pandey HM (2021) Learning interaction dynamics with an interactive lstm for conversational sentiment analysis. Neural Netw 133:40–56CrossRef Zhang Y, Tiwari P, Song D, Mao X, Wang P, Li X, Pandey HM (2021) Learning interaction dynamics with an interactive lstm for conversational sentiment analysis. Neural Netw 133:40–56CrossRef
go back to reference Zubiaga A, Liakata M, Procter R (2017) Exploiting context for rumour detection in social media. In: International conference on social informatics, pp 109–123 Springer Zubiaga A, Liakata M, Procter R (2017) Exploiting context for rumour detection in social media. In: International conference on social informatics, pp 109–123 Springer
go back to reference Zubiaga A, Liakata M, Procter R, Bontcheva K, Tolmie P (2015) Crowdsourcing the annotation of rumourous conversations in social media. In: Proceedings of the 24th international conference on world wide web, pp 347–353 Zubiaga A, Liakata M, Procter R, Bontcheva K, Tolmie P (2015) Crowdsourcing the annotation of rumourous conversations in social media. In: Proceedings of the 24th international conference on world wide web, pp 347–353
Metadata
Title
Deep learning-based credibility conversation detection approaches from social network
Authors
Imen Fadhli
Lobna Hlaoua
Mohamed Nazih Omri
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01066-z

Premium Partner