Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2018 | OriginalPaper | Chapter

Deep Learning Based Image Reconstruction for Diffuse Optical Tomography

Authors : Hanene Ben Yedder, Aïcha BenTaieb, Majid Shokoufi, Amir Zahiremami, Farid Golnaraghi, Ghassan Hamarneh

Published in: Machine Learning for Medical Image Reconstruction

Publisher: Springer International Publishing

share
SHARE

Abstract

Diffuse optical tomography (DOT) is a relatively new imaging modality that has demonstrated its clinical potential of probing tumors in a non-invasive and affordable way. Image reconstruction is an ill-posed challenging task because knowledge of the exact analytic inverse transform does not exist a priori, especially in the presence of sensor non-idealities and noise. Standard reconstruction approaches involve approximating the inverse function and often require expert parameters tuning to optimize reconstruction performance. In this work, we evaluate the use of a deep learning model to reconstruct images directly from their corresponding DOT projection data. The inverse problem is solved by training the model via training pairs created using physics-based simulation. Both quantitative and qualitative results indicate the superiority of the proposed network compared to an analytic technique.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Panieri, E.: Breast cancer screening in developing countries. Best Pract. Res. Clin. Obstet. Gynaecol. 26, 283–290 (2012) CrossRef Panieri, E.: Breast cancer screening in developing countries. Best Pract. Res. Clin. Obstet. Gynaecol. 26, 283–290 (2012) CrossRef
2.
go back to reference Godavarty, A., Rodriguez, S., Jung, Y.J., Gonzalez, S.: Optical imaging for breast cancer prescreening. Breast Cancer: Targets Ther. 7, 193 (2015) Godavarty, A., Rodriguez, S., Jung, Y.J., Gonzalez, S.: Optical imaging for breast cancer prescreening. Breast Cancer: Targets Ther. 7, 193 (2015)
3.
go back to reference Shokoufi, M., Golnaraghi, F.: Development of a handheld diffuse optical breast cancer assessment probe. J. Innov. Opt. Health Sci. 9(2), 1650007 (2016) CrossRef Shokoufi, M., Golnaraghi, F.: Development of a handheld diffuse optical breast cancer assessment probe. J. Innov. Opt. Health Sci. 9(2), 1650007 (2016) CrossRef
4.
go back to reference Flexman, M.L., Kim, H.K., Stoll, R., et al.: A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue. Rev. Sci. Instrum. 83(3), 033108 (2012) CrossRef Flexman, M.L., Kim, H.K., Stoll, R., et al.: A wireless handheld probe with spectrally constrained evolution strategies for diffuse optical imaging of tissue. Rev. Sci. Instrum. 83(3), 033108 (2012) CrossRef
5.
go back to reference Shokoufi, M.: Multi-modality breast cancer assessment tools using diffuse optical and electrical impedance spectroscopy. Ph.D. thesis (2016) Shokoufi, M.: Multi-modality breast cancer assessment tools using diffuse optical and electrical impedance spectroscopy. Ph.D. thesis (2016)
6.
go back to reference Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017) MathSciNetCrossRef
7.
go back to reference Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008) CrossRef Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008) CrossRef
8.
go back to reference Wang, G.: A perspective on deep imaging. IEEE Access 4, 8914–8924 (2016) CrossRef Wang, G.: A perspective on deep imaging. IEEE Access 4, 8914–8924 (2016) CrossRef
9.
go back to reference Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017) CrossRef Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017) CrossRef
11.
go back to reference McCann, M.T., Jin, K.H., Unser, M.: A review of convolutional neural networks for inverse problems in imaging. (2017). arXiv preprint arXiv:​1710.​04011 McCann, M.T., Jin, K.H., Unser, M.: A review of convolutional neural networks for inverse problems in imaging. (2017). arXiv preprint arXiv:​1710.​04011
12.
go back to reference Boublil, D., Elad, M., Shtok, J., Zibulevsky, M.: Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Trans. Med. Imaging 34(7), 1474–1485 (2015) CrossRef Boublil, D., Elad, M., Shtok, J., Zibulevsky, M.: Spatially-adaptive reconstruction in computed tomography using neural networks. IEEE Trans. Med. Imaging 34(7), 1474–1485 (2015) CrossRef
13.
go back to reference Nguyen, T.C., Bui, V., Nehmetallah, G.: Computational optical tomography using 3-D deep convolutional neural networks. Opt. Eng. 57(4), 043111 (2018) CrossRef Nguyen, T.C., Bui, V., Nehmetallah, G.: Computational optical tomography using 3-D deep convolutional neural networks. Opt. Eng. 57(4), 043111 (2018) CrossRef
14.
go back to reference Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018) CrossRef Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018) CrossRef
15.
go back to reference Ghosh, N., Mohanty, S.K., Majumder, S.K., Gupta, P.K.: Measurement of optical transport properties of normal and malignant human breast tissue. Appl. Opt. 40(1), 176–184 (2001) CrossRef Ghosh, N., Mohanty, S.K., Majumder, S.K., Gupta, P.K.: Measurement of optical transport properties of normal and malignant human breast tissue. Appl. Opt. 40(1), 176–184 (2001) CrossRef
16.
go back to reference Schweiger, M., Arridge, S.R.: The Toast++ software suite for forward and inverse modeling in optical tomography. J. Biomed. Opt. 19(4), 040801 (2014) CrossRef Schweiger, M., Arridge, S.R.: The Toast++ software suite for forward and inverse modeling in optical tomography. J. Biomed. Opt. 19(4), 040801 (2014) CrossRef
Metadata
Title
Deep Learning Based Image Reconstruction for Diffuse Optical Tomography
Authors
Hanene Ben Yedder
Aïcha BenTaieb
Majid Shokoufi
Amir Zahiremami
Farid Golnaraghi
Ghassan Hamarneh
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00129-2_13

Premium Partner