Skip to main content
Top

2019 | OriginalPaper | Chapter

Deep Learning-Based Multi-scale Multi-object Detection and Classification for Autonomous Driving

Authors : Maximilian Fink, Ying Liu, Armin Engstle, Stefan-Alexander Schneider

Published in: Fahrerassistenzsysteme 2018

Publisher: Springer Fachmedien Wiesbaden

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Autonomous driving vehicles need to perceive their immediate environment in order to detect other traffic participants such as vehicles or pedestrians. Vision based functionality using camera images have been widely investigated because of the low sensor price and the detailed information they provide. Conventional computer vision techniques are based on hand-engineered features. Due to the very complex environmental conditions this limited feature representations fail to uniquely identify a specific object. Thanks to the rapid development of processing power (especially GPUs), advanced software frameworks and the availability of large image datasets, Convolutional Neural Networks (CNN) have distinguished themselves by scoring the best on populthis information, the boundingar object detection benchmarks in the research community. Using deep architectures of CNN with many layers, they are able to extract both low-level and high-level features from images by skipping the feature design procedures of conventional computer vision approaches. In this work, an end-to-end learning pipeline for multi-object detection based on one existing CNN architecture, namely Single Shot MultiBox Detector (SSD) [1], with real-time capability, is first reviewed. The SSD detector predicts the object’s position based on feature maps of different resolution together with a default set of bounding boxes. Using the SSD architecture as a starting point, this work focuses on training a single CNN to achieve high detection accuracy for vehicles and pedestrians computed in real time. Since vehicles and pedestrians have different sizes, shapes and poses, independent NNs are normally trained to perform the two detection tasks. It is thus very challenging to train one NN to learn the multi-scale detection ability. The contribution of this work can be summarized as follows:
  • A detailed investigation on different public datasets (e.g., KITTI [2], Caltech [3] and Udacity [4] datasets). The datasets provide annotated images from real world traffic scenarios containing objects of vehicles and pedestrians.
  • A data augmentation and weighting scheme is proposed to tackle the problem of class imbalance in the datasets to enable the training for both classes in a balanced manner.
  • Specific default bounding box design for small objects and further data augmentation techniques to balance the number of objects in different scales.
  • Extended SSD+ and SSD2 architectures are proposed in order to improve the detection performance and keeping the computational requirements low.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Liu, W., et al.: SSD Single Shot MultiBox Detector (2015) Liu, W., et al.: SSD Single Shot MultiBox Detector (2015)
2.
go back to reference Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012) Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
3.
go back to reference Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)CrossRef Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: an evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743–761 (2012)CrossRef
5.
go back to reference Trimble, T.E., Bishop, R., Morgan, J.F., Blanco, M.: Human Factors Evaluation of Level 2 And Level 3 Automated Driving Concepts: Past Research, State of Automation Technology, and Emerging System Concepts (2014) Trimble, T.E., Bishop, R., Morgan, J.F., Blanco, M.: Human Factors Evaluation of Level 2 And Level 3 Automated Driving Concepts: Past Research, State of Automation Technology, and Emerging System Concepts (2014)
6.
go back to reference Ren, S., He, K., Girshick, R., Sun, J.. Faster R-CNN: towards real-time object detection with region proposal networks (2016) Ren, S., He, K., Girshick, R., Sun, J.. Faster R-CNN: towards real-time object detection with region proposal networks (2016)
7.
go back to reference Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger (2016) Redmon, J., Farhadi, A.: YOLO9000: Better, Faster, Stronger (2016)
10.
go back to reference Wojek, C., Stefan, W., Bernt, S.. Multi-cue onboard pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2009) Wojek, C., Stefan, W., Bernt, S.. Multi-cue onboard pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition (2009)
Metadata
Title
Deep Learning-Based Multi-scale Multi-object Detection and Classification for Autonomous Driving
Authors
Maximilian Fink
Ying Liu
Armin Engstle
Stefan-Alexander Schneider
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-658-23751-6_20

Premium Partner