Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 6/2021

05-01-2021 | Research Article-Biological Sciences

Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease

Authors: P. R. Buvaneswari, R. Gayathri

Published in: Arabian Journal for Science and Engineering | Issue 6/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The classification of Alzheimer’s disease (AD) using ADNI dataset requires suitable feature segmenting techniques to detect the existing and relevant finer smaller brain region features, together with effective classification model, to eliminate a massive, labor-intensive and time-consuming voxel-based morphometry technique. Here, in this paper, a deep learning-based segmenting method using SegNet to detect AD pertinent brain parts features from structural magnetic resonance imaging (sMRI) and subsequently classifying accurately AD and dementia condition using ResNet-101 is presented. A deep learning-based image segmenting approach is experimented in detecting the delicate features of brain morphological changes due to AD that benefits classification performance for cognitive normal, mild cognitive impairment and AD, and thus provides an easy automatic diagnosis of Alzheimer’s diseases. For classification, ResNet-101 is trained applying features extracted from SegNet with ADNI dataset. This paper demonstrated particularly to attain top-level automated classification. The seven morphological features like grey matter, white matter, cortex surface, gyri and sulci contour, cortex thickness, hippocampus and cerebrospinal fluid space extracted from 240 sMRI with SegNet are used to train ResNet for classification, and this classifier achieved a sensitivity of 96% and an accuracy of 95% over 240 ADNI sMRI other than used for training.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Braak, H.; Braak, E.; Bohl, J.; Bratzke, H.: Evolution of Alzheimer’s disease related cortical lesions. In: Gertz, H.-J., Arendt, Th (eds.) Alzheimer’s Disease-from Basic Research to Clinical Applications, pp. 97–106. Springer, Vienna (1998) CrossRef Braak, H.; Braak, E.; Bohl, J.; Bratzke, H.: Evolution of Alzheimer’s disease related cortical lesions. In: Gertz, H.-J., Arendt, Th (eds.) Alzheimer’s Disease-from Basic Research to Clinical Applications, pp. 97–106. Springer, Vienna (1998) CrossRef
2.
go back to reference Bain, L.J.; Jedrziewski, K.; Morrison-Bogorad, M.; Albert, M.; Cotman, C.; Hendrie, H.; et al.: Healthy brain aging: a meeting report from the Sylvan M. Cohen Annual Retreat of the University of Pennsylvania Institute on Aging. Alzheimer’s Dement. 4, 443–446 (2008)CrossRef Bain, L.J.; Jedrziewski, K.; Morrison-Bogorad, M.; Albert, M.; Cotman, C.; Hendrie, H.; et al.: Healthy brain aging: a meeting report from the Sylvan M. Cohen Annual Retreat of the University of Pennsylvania Institute on Aging. Alzheimer’s Dement. 4, 443–446 (2008)CrossRef
3.
go back to reference Alzheimer’s Association: 2016 Alzheimer’s disease facts and figures, Alzheimer’s and Dementia, 12(4), pp. 459–509 (2016) Alzheimer’s Association: 2016 Alzheimer’s disease facts and figures, Alzheimer’s and Dementia, 12(4), pp. 459–509 (2016)
4.
go back to reference Wattmo, C.; Londos, E.; Minthon, L.: Risk factors that affect life expectancy in Alzheimer’s disease: a 15-year follow-up. Dement. Geriatr. Cogn. Disord. 38, 286–299 (2014)CrossRef Wattmo, C.; Londos, E.; Minthon, L.: Risk factors that affect life expectancy in Alzheimer’s disease: a 15-year follow-up. Dement. Geriatr. Cogn. Disord. 38, 286–299 (2014)CrossRef
5.
go back to reference Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746 (2007)CrossRef Dubois, B.; Feldman, H.H.; Jacova, C.; DeKosky, S.T.; Barberger-Gateau, P.; Cummings, J.; et al.: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746 (2007)CrossRef
6.
go back to reference Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 270–279 (2011)CrossRef Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7, 270–279 (2011)CrossRef
7.
go back to reference Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L.: Mild cognitive impairment: a concept in evolution. J. Int. Med. 275, 214–228 (2014)CrossRef Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L.: Mild cognitive impairment: a concept in evolution. J. Int. Med. 275, 214–228 (2014)CrossRef
8.
go back to reference Artero, S.; Petersen, R.; Touchon, J.; Ritchie, K.: Revised criteria for mild cognitive impairment: validation within a longitudinal population study. Dement. Geriatr. Cogn. Disord. 22, 465–470 (2006)CrossRef Artero, S.; Petersen, R.; Touchon, J.; Ritchie, K.: Revised criteria for mild cognitive impairment: validation within a longitudinal population study. Dement. Geriatr. Cogn. Disord. 22, 465–470 (2006)CrossRef
9.
go back to reference Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Int. Med. 256, 183–194 (2004)CrossRef Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Int. Med. 256, 183–194 (2004)CrossRef
10.
go back to reference Wee, C.-Y.; Yap, P.-T.; Shen, D.; For the Alzheimer’s disease Neuroimaging Initiative: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping. 34, 3411–3425 (2013) Wee, C.-Y.; Yap, P.-T.; Shen, D.; For the Alzheimer’s disease Neuroimaging Initiative: Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping. 34, 3411–3425 (2013)
11.
go back to reference Cuingnet, R.; Gerardin, E.; Tessieras, J.; Auzias, G.; Leheéricy, S.; Habert, M.-O.; et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage. 56, 766–781 (2011)CrossRef Cuingnet, R.; Gerardin, E.; Tessieras, J.; Auzias, G.; Leheéricy, S.; Habert, M.-O.; et al.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage. 56, 766–781 (2011)CrossRef
12.
go back to reference Hanyu, H.; Sato, T.; Hirao, K.; Kanetaka, H.; Iwamoto, T.; Koizumi, K.: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer’s disease: a longitudinal SPECT study. J. Neurol. Sci. 290(1–2), 96–101 (2010)CrossRef Hanyu, H.; Sato, T.; Hirao, K.; Kanetaka, H.; Iwamoto, T.; Koizumi, K.: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer’s disease: a longitudinal SPECT study. J. Neurol. Sci. 290(1–2), 96–101 (2010)CrossRef
13.
go back to reference Gray, K.R.; Wolz, R.; Heckemann, R.A.; Aljabar, P.; Hammers, A.; Rueckert, D.: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage 60(1), 221–229 (2012)CrossRef Gray, K.R.; Wolz, R.; Heckemann, R.A.; Aljabar, P.; Hammers, A.; Rueckert, D.: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer’s disease. NeuroImage 60(1), 221–229 (2012)CrossRef
14.
go back to reference Liu, F.; Zhou, L.; Shen, C.; Yin, J.: Multiple kernel learning in the primal for multi-modal Alzheimer’s disease classification. IEEE J. Biomed. Health Inform. 18(3), 984–990 (2014)CrossRef Liu, F.; Zhou, L.; Shen, C.; Yin, J.: Multiple kernel learning in the primal for multi-modal Alzheimer’s disease classification. IEEE J. Biomed. Health Inform. 18(3), 984–990 (2014)CrossRef
15.
go back to reference Zhang, D.; Wang, Y.; Zhou, L.; Yuan, H.; Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRef Zhang, D.; Wang, Y.; Zhou, L.; Yuan, H.; Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)CrossRef
16.
go back to reference Papakostas, G.A.; Savio, A.; Graña, M.; Kaburlasos, V.G.: A lattice computing approach to Alzheimer’s disease computer assisted diagnosis based on MRI data. Neurocomputing 150, 37–42 (2015)CrossRef Papakostas, G.A.; Savio, A.; Graña, M.; Kaburlasos, V.G.: A lattice computing approach to Alzheimer’s disease computer assisted diagnosis based on MRI data. Neurocomputing 150, 37–42 (2015)CrossRef
17.
go back to reference Beheshti, I.; Demirel, H.: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Comput. Biol. Med. 64, 208–216 (2015)CrossRef Beheshti, I.; Demirel, H.: Probability distribution function-based classification of structural MRI for the detection of Alzheimer’s disease. Comput. Biol. Med. 64, 208–216 (2015)CrossRef
18.
go back to reference Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)CrossRef Moradi, E.; Pepe, A.; Gaser, C.; Huttunen, H.; Tohka, J.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage 104, 398–412 (2015)CrossRef
19.
go back to reference Bron, E.E.; Smits, M.; Vrenken, H.; Barkhof, F.; Scheltens, P.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CAD dementia challenge. NeuroImage 111, 562–579 (2015)CrossRef Bron, E.E.; Smits, M.; Vrenken, H.; Barkhof, F.; Scheltens, P.: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CAD dementia challenge. NeuroImage 111, 562–579 (2015)CrossRef
20.
go back to reference Zhang, Y.; Dong, Z.; Phillips, P.; et al.: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9, 66 (2015) Zhang, Y.; Dong, Z.; Phillips, P.; et al.: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front. Comput. Neurosci. 9, 66 (2015)
21.
go back to reference Andersen, A.H.; Rayens, W.S.; Liu, Y.; Smith, C.D.: Partial least squares for discrimination in fMRI data. Magn. Reson. Imaging 30(3), 446–452 (2012)CrossRef Andersen, A.H.; Rayens, W.S.; Liu, Y.; Smith, C.D.: Partial least squares for discrimination in fMRI data. Magn. Reson. Imaging 30(3), 446–452 (2012)CrossRef
22.
go back to reference Mesrob, L.: DTI and structural MRI classification in Alzheimer’s disease. Adv. Mol. Imag. 02, 12–20 (2012)CrossRef Mesrob, L.: DTI and structural MRI classification in Alzheimer’s disease. Adv. Mol. Imag. 02, 12–20 (2012)CrossRef
23.
go back to reference Lee, W.; Park, B.; Han, K.: Classification of diffusion tensor images for the early detection of Alzheimer’s disease. Comput. Biol. Med. 43(10), 1313–1320 (2013)CrossRef Lee, W.; Park, B.; Han, K.: Classification of diffusion tensor images for the early detection of Alzheimer’s disease. Comput. Biol. Med. 43(10), 1313–1320 (2013)CrossRef
24.
go back to reference Diamantaras, K.I.; Kung, S.Y.: Principal Component Neural Networks. Wiley, New York (1996)MATH Diamantaras, K.I.; Kung, S.Y.: Principal Component Neural Networks. Wiley, New York (1996)MATH
25.
go back to reference Barnes, J.; Bartlett, J.W.; van de Pol, L.A.; et al.: A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol. Aging 30(11), 1711–1723 (2009)CrossRef Barnes, J.; Bartlett, J.W.; van de Pol, L.A.; et al.: A meta-analysis of hippocampal atrophy rates in Alzheimer’s disease. Neurobiol. Aging 30(11), 1711–1723 (2009)CrossRef
26.
go back to reference Magnin, B.; Mesrob, L.; Kinkingnéhun, S.; et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Diagnost. Neuroradiol. 51(2), 73–83 (2009)CrossRef Magnin, B.; Mesrob, L.; Kinkingnéhun, S.; et al.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Diagnost. Neuroradiol. 51(2), 73–83 (2009)CrossRef
27.
go back to reference Fjell, A.M.; Walhovd, K.B.; Fennema-Notestine, C.; et al.: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 30(6), 2088–2101 (2010)CrossRef Fjell, A.M.; Walhovd, K.B.; Fennema-Notestine, C.; et al.: CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J. Neurosci. 30(6), 2088–2101 (2010)CrossRef
28.
go back to reference Liu, S.; Liu, S.; Cai, W.; et al.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)CrossRef Liu, S.; Liu, S.; Cai, W.; et al.: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans. Biomed. Eng. 62(4), 1132–1140 (2015)CrossRef
29.
go back to reference Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: Proceedings/IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1015–1018 (2014) Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D.: Early diagnosis of Alzheimer’s disease with deep learning. In: Proceedings/IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1015–1018 (2014)
30.
go back to reference Li, F.; Tran, L.; Thung, K.H.; Ji, S.; Shen, D.; Li, J.: A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inform. 19(5), 1610–1616 (2015)CrossRef Li, F.; Tran, L.; Thung, K.H.; Ji, S.; Shen, D.; Li, J.: A robust deep model for improved classification of AD/MCI patients. IEEE J. Biomed. Health Inform. 19(5), 1610–1616 (2015)CrossRef
31.
go back to reference Ye, J.; Wu, T.; Li, J.; Chen, K.: Machine learning approaches for the neuroimaging study of Alzheimer’s disease. IEEE Comput. 4(4), 99–101 (2011) Ye, J.; Wu, T.; Li, J.; Chen, K.: Machine learning approaches for the neuroimaging study of Alzheimer’s disease. IEEE Comput. 4(4), 99–101 (2011)
32.
go back to reference Rama, R. K.; Park, H. C.; Lee, S.-W.: Sparse feature selection using import vector machines for classification of Alzheimer’s disease. In: Proceedings of 2016 King Fall Conference (2016) Rama, R. K.; Park, H. C.; Lee, S.-W.: Sparse feature selection using import vector machines for classification of Alzheimer’s disease. In: Proceedings of 2016 King Fall Conference (2016)
33.
go back to reference Zhu, X.; Suk, H.; Wang, L.; Lee, S.W.; Shena, D.: Alzheimer’s Disease Neuroimaging Initiative A Novel Relational Regularization Feature Selection Method for Joint Regression and Classification in AD Diagnosis, Medical Image Analysis. Elseiver, Amsterdam (2015) Zhu, X.; Suk, H.; Wang, L.; Lee, S.W.; Shena, D.: Alzheimer’s Disease Neuroimaging Initiative A Novel Relational Regularization Feature Selection Method for Joint Regression and Classification in AD Diagnosis, Medical Image Analysis. Elseiver, Amsterdam (2015)
34.
go back to reference Xu, L.; Wu, X.; Li, R.; Chen, K.; Long, Z.; Zhang, J.; et al.: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. J. Alzheimer’s Dis. 51, 1045–1056 (2016)CrossRef Xu, L.; Wu, X.; Li, R.; Chen, K.; Long, Z.; Zhang, J.; et al.: Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. J. Alzheimer’s Dis. 51, 1045–1056 (2016)CrossRef
35.
go back to reference Gönen, M.; Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)MathSciNetMATH Gönen, M.; Alpaydin, E.: Multiple kernel learning algorithms. J. Mach. Learn. Res. 12, 2211–2268 (2011)MathSciNetMATH
36.
go back to reference Wu, X.; Li, Q.; Xu, L.; Chen, K.; Yao, L.: Multi-feature kernel discriminant dictionary learning for face recognition. Pattern Recogn. 66, 404–411 (2017)CrossRef Wu, X.; Li, Q.; Xu, L.; Chen, K.; Yao, L.: Multi-feature kernel discriminant dictionary learning for face recognition. Pattern Recogn. 66, 404–411 (2017)CrossRef
37.
go back to reference Vieira, S.; Pinaya, W.H.; Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders. Methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017)CrossRef Vieira, S.; Pinaya, W.H.; Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders. Methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017)CrossRef
38.
go back to reference He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770-778 (2016) He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, pp. 770-778 (2016)
39.
go back to reference Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv: 1409.1556 (2014) Simonyan, K.; Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:​ 1409.​1556 (2014)
40.
go back to reference Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252 (2015)MathSciNetCrossRef Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; Berg, A.C.; Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211–252 (2015)MathSciNetCrossRef
41.
go back to reference Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015) Long, J.; Shelhamer, E.; Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
42.
go back to reference Liang-Chieh, C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015) Liang-Chieh, C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)
43.
go back to reference Ioffe, S.; Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, arXiv:1502.03167 (2015) Ioffe, S.; Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, arXiv:​1502.​03167 (2015)
44.
go back to reference Badrinarayanan, V.; Kendall, A.; Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRef Badrinarayanan, V.; Kendall, A.; Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRef
46.
go back to reference Wu, H.; Xin, M.; Fang, W.; Hu, H.M.; Hu, Z.: Multi-level feature network with multi-loss for person re-identification. IEEE Access (2015) Wu, H.; Xin, M.; Fang, W.; Hu, H.M.; Hu, Z.: Multi-level feature network with multi-loss for person re-identification. IEEE Access (2015)
47.
go back to reference Schaer, M.; Cuadra, M.B.; Schmansky, N.; Fischl, B.; Thiran, J.P.; Eliez, S.: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. J. Vis. Exp. 59, e3417 (2012) Schaer, M.; Cuadra, M.B.; Schmansky, N.; Fischl, B.; Thiran, J.P.; Eliez, S.: How to measure cortical folding from MR images: a step-by-step tutorial to compute local gyrification index. J. Vis. Exp. 59, e3417 (2012)
48.
go back to reference Lu, D.; Popuri, K.; Ding, W.; Balachandar, R.; Faisal, M.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MRI and FDG-pPET images. Sci. Rep 8, 1–13 (2018) Lu, D.; Popuri, K.; Ding, W.; Balachandar, R.; Faisal, M.: Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MRI and FDG-pPET images. Sci. Rep 8, 1–13 (2018)
49.
go back to reference Lian, C.; Liu, M.; Zhang, J.; Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42, 880–893 (2020)CrossRef Lian, C.; Liu, M.; Zhang, J.; Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. 42, 880–893 (2020)CrossRef
Metadata
Title
Deep Learning-Based Segmentation in Classification of Alzheimer’s Disease
Authors
P. R. Buvaneswari
R. Gayathri
Publication date
05-01-2021
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 6/2021
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05193-z

Other articles of this Issue 6/2021

Arabian Journal for Science and Engineering 6/2021 Go to the issue

Premium Partners