Skip to main content
Top

Deep-Learning-Based Storage-Allocation Approach to Improve the AMHS Throughput Capacity in a Semiconductor Fabrication Facility

  • 2018
  • OriginalPaper
  • Chapter
Published in:

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, automated material handling systems (AMHSs) in semiconductor fabrication plants (FABs) in South Korea have become a new and major bottleneck. This is mainly because the number of long-distance transportation requests has increased as the FAB area has widened. This paper presents a deep-learning-based adaptive method for the storage-allocation problem to improve the AMHS throughput capacity.
The AMHS in this research consists of overhead hoist transfer transports (OHTs), a unified rail for the OHTs, etc. The main problem involves scheduling (or designating) an intermediate buffer, e.g., a stocker or a side track buffer, for a single lot. Thus far, a static optimization approach has been widely applied to the problem. This research shows that a learning-based adaptive storage-allocation strategy can increase the AMHS capacity in terms of throughput. The deep-learning model considers various production conditions, including processing time, transportation time, and the distribution of works in process (WIP).
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03028784).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Title
Deep-Learning-Based Storage-Allocation Approach to Improve the AMHS Throughput Capacity in a Semiconductor Fabrication Facility
Authors
Haejoong Kim
Dae-Eun Lim
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-2853-4_18
This content is only visible if you are logged in and have the appropriate permissions.

Premium Partner

    Image Credits
    Neuer Inhalt/© ITandMEDIA, Nagarro GmbH/© Nagarro GmbH, AvePoint Deutschland GmbH/© AvePoint Deutschland GmbH, AFB Gemeinnützige GmbH/© AFB Gemeinnützige GmbH, USU GmbH/© USU GmbH