Skip to main content
Top
Published in:

01-12-2020 | Original Article

Deep learning CNN–LSTM framework for Arabic sentiment analysis using textual information shared in social networks

Authors: Abubakr H. Ombabi, Wael Ouarda, Adel M. Alimi

Published in: Social Network Analysis and Mining | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recently, the world has witnessed an exponential growth of social networks which have opened a venue for online users to express and share their opinions in different life aspects. Sentiment analysis has become a hot-trend research topic in the field of natural language processing due to its significant roles in analyzing the public’s opinion and deriving effective opinion-based decisions. Arabic is one of the widely used languages across social networks. However, its morphological complexities and varieties of dialects make it a challenging language for sentiment analysis. Therefore, inspired by the success of deep learning algorithms, in this paper, we propose a novel deep learning model for Arabic language sentiment analysis based on one layer CNN architecture for local feature extraction, and two layers LSTM to maintain long-term dependencies. The feature maps learned by CNN and LSTM are passed to SVM classifier to generate the final classification. This model is supported by FastText words embedding model. Extensive experiments carried out on a multi-domain corpus demonstrate the outstanding classification performance of this model with an accuracy of 90.75%. Furthermore, the proposed model is validated using different embedding models and classifiers. The results show that FastText skip-gram model and SVM classifier are more valuable alternatives for the Arabic sentiment analysis. The proposed model outperforms several well-established state-of-the-art approaches on relevant corpora with up to \(+\,20.71\%\) accuracy improvement.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ain QT, Ali M, Riaz A, Noureen A, Kamran M, Hayat B, Rehman A (2017) Sentiment analysis using deep learning techniques: a review. Int J Adv Comput Sci 8(6):424 Ain QT, Ali M, Riaz A, Noureen A, Kamran M, Hayat B, Rehman A (2017) Sentiment analysis using deep learning techniques: a review. Int J Adv Comput Sci 8(6):424
go back to reference Al-ayyoub M, Nuseir A (2016) Hierarchical classifiers for multi-way sentiment analysis of Arabic reviews. Int J Adv Comput Sci Appl 7(2):531–539 Al-ayyoub M, Nuseir A (2016) Hierarchical classifiers for multi-way sentiment analysis of Arabic reviews. Int J Adv Comput Sci Appl 7(2):531–539
go back to reference Al-kabi MN, Gigieh AH, Alsmadi IM, Wahsheh HA (2014) Opinion mining and analysis for Arabic language. Int J Adv Comput Sci Appl 5(5):181–195 Al-kabi MN, Gigieh AH, Alsmadi IM, Wahsheh HA (2014) Opinion mining and analysis for Arabic language. Int J Adv Comput Sci Appl 5(5):181–195
go back to reference Alayba AM, Palade V, England M, Iqbal R (2018) Improving sentiment analysis in Arabic using word representation. In: 2nd international workshop on Arabic and derived script analysis and recognition (ASAR), pp 13–18 Alayba AM, Palade V, England M, Iqbal R (2018) Improving sentiment analysis in Arabic using word representation. In: 2nd international workshop on Arabic and derived script analysis and recognition (ASAR), pp 13–18
go back to reference Alowaidi S, Saleh M, Abulnaja O (2017) Semantic sentiment analysis of Arabic texts. Int J Adv Comput Sci Appl 8(2):256–262 Alowaidi S, Saleh M, Abulnaja O (2017) Semantic sentiment analysis of Arabic texts. Int J Adv Comput Sci Appl 8(2):256–262
go back to reference Alsmearat K, Shehab M, Al-Ayyoub M, Al-Shalabi R, Kanaan G (2015) Emotion analysis of Arabic articles and its impact on identifying the author’s gender Alsmearat K, Shehab M, Al-Ayyoub M, Al-Shalabi R, Kanaan G (2015) Emotion analysis of Arabic articles and its impact on identifying the author’s gender
go back to reference Altowayan AA (2017) Improving Arabic sentiment analysis with sentiment-specific embeddings. In: IEEE international conference on big data (BIGDATA) improving, pp 4314–4320 Altowayan AA (2017) Improving Arabic sentiment analysis with sentiment-specific embeddings. In: IEEE international conference on big data (BIGDATA) improving, pp 4314–4320
go back to reference Altowayan AA, Tao L (2016) Word embeddings for Arabic sentiment analysis. In: IEEE international conference on big data (big data) word, pp 3820–3825. http://tanzil.net Altowayan AA, Tao L (2016) Word embeddings for Arabic sentiment analysis. In: IEEE international conference on big data (big data) word, pp 3820–3825. http://​tanzil.​net
go back to reference Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv, pp 1–60 Dellavale D, Urdapilleta E, Cámpora N, Velarde OM, Kochen S, Mato G (2020) Prediction of epileptic seizures based on mean phase coherence. BioArXiv, pp 1–60
go back to reference Elouardighi A, Maghfour M, Hammia H, Aazi Fz (2017) Analysis in the standard or dialectal Arabic. In: 2017 3rd international conference of cloud computing technologies and applications (CloudTech) Elouardighi A, Maghfour M, Hammia H, Aazi Fz (2017) Analysis in the standard or dialectal Arabic. In: 2017 3rd international conference of cloud computing technologies and applications (CloudTech)
go back to reference Haydar MS, Helal MA, Hossain SA (2018) Sentiment extraction from bangla text: a character level supervised recurrent neural network approach. In: 2018 international conference on computer, communication, chemical, material and electronic engineering (IC4ME2), pp 1–4. https://doi.org/10.1109/IC4ME2.2018.8465606 Haydar MS, Helal MA, Hossain SA (2018) Sentiment extraction from bangla text: a character level supervised recurrent neural network approach. In: 2018 international conference on computer, communication, chemical, material and electronic engineering (IC4ME2), pp 1–4. https://​doi.​org/​10.​1109/​IC4ME2.​2018.​8465606
go back to reference Lalji TK, Deshmukh SN (2016) Twitter sentiment analysis using hybrid approach. Int Res J Eng Technol (IRJET) 3:2887–2890 Lalji TK, Deshmukh SN (2016) Twitter sentiment analysis using hybrid approach. Int Res J Eng Technol (IRJET) 3:2887–2890
go back to reference Mostafa AM (2017) An evaluation of sentiment analysis and classification algorithms for Arabic textual data. Int J Comput Appl 158(3):975–8887 Mostafa AM (2017) An evaluation of sentiment analysis and classification algorithms for Arabic textual data. Int J Comput Appl 158(3):975–8887
go back to reference Ombabi AH, Lazzez O, Ouarda W, Alimi AM (2017) Deep learning framework based on Word2Vec and CNN for users interests classification. In: 2017 Sudan conference on computer science and information technology (SCCSIT), pp 1–7 Ombabi AH, Lazzez O, Ouarda W, Alimi AM (2017) Deep learning framework based on Word2Vec and CNN for users interests classification. In: 2017 Sudan conference on computer science and information technology (SCCSIT), pp 1–7
go back to reference Preethi G, Krishna PV (2017) Application of deep learning to sentiment analysis for recommender system on cloud Preethi G, Krishna PV (2017) Application of deep learning to sentiment analysis for recommender system on cloud
go back to reference Sasmita DH, Wicaksono AF, Louvan S, Adriani M (2017) Unsupervised aspect-based sentiment analysis on Indonesian restaurant reviews. In: Proceedings of the 2017 international conference on Asian language processing, IALP 2017 2018-Janua, pp 383–386. https://doi.org/10.1109/IALP.2017.8300623 Sasmita DH, Wicaksono AF, Louvan S, Adriani M (2017) Unsupervised aspect-based sentiment analysis on Indonesian restaurant reviews. In: Proceedings of the 2017 international conference on Asian language processing, IALP 2017 2018-Janua, pp 383–386. https://​doi.​org/​10.​1109/​IALP.​2017.​8300623
go back to reference Tarwani KM, Edem S (2017) Survey on recurrent neural network in natural language processing. Int J Eng Trends Technol 48(6):301–304CrossRef Tarwani KM, Edem S (2017) Survey on recurrent neural network in natural language processing. Int J Eng Trends Technol 48(6):301–304CrossRef
go back to reference Wang J, Cao Z (2017) Chinese text sentiment analysis using LSTM network based on L2 and Nadam, pp 1891–1895 Wang J, Cao Z (2017) Chinese text sentiment analysis using LSTM network based on L2 and Nadam, pp 1891–1895
Metadata
Title
Deep learning CNN–LSTM framework for Arabic sentiment analysis using textual information shared in social networks
Authors
Abubakr H. Ombabi
Wael Ouarda
Adel M. Alimi
Publication date
01-12-2020
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2020
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-020-00668-1

Premium Partner