Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

6. Deep Learning in Solar Forecasting Tasks

Authors : Long Xu, Yihua Yan, Xin Huang

Published in: Deep Learning in Solar Astronomy

Publisher: Springer Nature Singapore

share
SHARE

Abstract

Besides classification and generation, deep learning is also applicable to time series analysis. Unlike CNN which accepts singe image input, RNN is specifically designed for handling time series input, e.g., video sequence, natural language processing. As the best representative of RNN, LSTM has been widely exploited in various of time series analysis, achieving big success. In this chapter, it is applied to solar activity/event forecasting and solar radiation index prediction. As one of the most violent solar eruptions, solar flare is the main driving source of catastrophic space weather, so forecasting of solar flare is of great importance. The solar radio flux of 10.7 cm is a typical index for measuring global solar activity. It is a typical indicator of long-term space weather.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Huang X, Wang H, Xu L, Liu J, Li R, Dai X. 2018 Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms. Astrophys. J. 856, 7. Huang X, Wang H, Xu L, Liu J, Li R, Dai X. 2018 Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms. Astrophys. J. 856, 7.
2.
go back to reference Giovanelli RG. 1939 The Relations Between Eruptions and Sunspots.. Astrophys. J. 89, 555. ADSCrossRef Giovanelli RG. 1939 The Relations Between Eruptions and Sunspots.. Astrophys. J. 89, 555. ADSCrossRef
3.
go back to reference Gallagher PT, Long DM. 2011 Large-scale Bright Fronts in the Solar Corona: A Review of “EIT waves”. Space Sci. Rev. 158, 365–396. ADSCrossRef Gallagher PT, Long DM. 2011 Large-scale Bright Fronts in the Solar Corona: A Review of “EIT waves”. Space Sci. Rev. 158, 365–396. ADSCrossRef
4.
go back to reference Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012 Toward Reliable Benchmarking of Solar Flare Forecasting Methods. Astrophys. J. Lett. 747, L41. ADSCrossRef Bloomfield DS, Higgins PA, McAteer RTJ, Gallagher PT. 2012 Toward Reliable Benchmarking of Solar Flare Forecasting Methods. Astrophys. J. Lett. 747, L41. ADSCrossRef
5.
go back to reference Leka KD, Barnes G. 2003 Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis. Astrophys. J. 595, 1296–1306. ADSCrossRef Leka KD, Barnes G. 2003 Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis. Astrophys. J. 595, 1296–1306. ADSCrossRef
6.
go back to reference Leka KD, Barnes G. 2007 Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. IV. A Statistically Significant Sample. Astrophys. J. 656, 1173–1186. ADSCrossRef Leka KD, Barnes G. 2007 Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. IV. A Statistically Significant Sample. Astrophys. J. 656, 1173–1186. ADSCrossRef
7.
go back to reference Mason JP, Hoeksema JT. 2010 Testing Automated Solar Flare Forecasting with 13 Years of Michelson Doppler Imager Magnetograms. Astrophys. J. 723, 634–640. ADSCrossRef Mason JP, Hoeksema JT. 2010 Testing Automated Solar Flare Forecasting with 13 Years of Michelson Doppler Imager Magnetograms. Astrophys. J. 723, 634–640. ADSCrossRef
8.
go back to reference Li R, Wang HN, He H, Cui YM, Zhan-LeDu. 2007 Support Vector Machine combined with K-Nearest Neighbors for Solar Flare Forecasting. Chin. J. Astron. Astrophys. 7, 441–447. ADSCrossRef Li R, Wang HN, He H, Cui YM, Zhan-LeDu. 2007 Support Vector Machine combined with K-Nearest Neighbors for Solar Flare Forecasting. Chin. J. Astron. Astrophys. 7, 441–447. ADSCrossRef
9.
go back to reference Bobra MG, Couvidat S. 2015 Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm. Astrophys. J. 798, 135. ADSCrossRef Bobra MG, Couvidat S. 2015 Solar Flare Prediction Using SDO/HMI Vector Magnetic Field Data with a Machine-learning Algorithm. Astrophys. J. 798, 135. ADSCrossRef
10.
go back to reference Nishizuka N, Sugiura K, Kubo Y, Den M, Watari S, Ishii M. 2017 Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms. Astrophys. J. 835, 156. ADSCrossRef Nishizuka N, Sugiura K, Kubo Y, Den M, Watari S, Ishii M. 2017 Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms. Astrophys. J. 835, 156. ADSCrossRef
11.
go back to reference Qahwaji R, Colak T. 2007 Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations. Solar Phys. 241, 195–211. ADSCrossRef Qahwaji R, Colak T. 2007 Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations. Solar Phys. 241, 195–211. ADSCrossRef
12.
go back to reference Wang HN, Cui YM, Li R, Zhang LY, Han H. 2008 Solar flare forecasting model supported with artificial neural network techniques. Advances in Space Research 42, 1464–1468. ADSCrossRef Wang HN, Cui YM, Li R, Zhang LY, Han H. 2008 Solar flare forecasting model supported with artificial neural network techniques. Advances in Space Research 42, 1464–1468. ADSCrossRef
13.
go back to reference Colak T, Qahwaji R. 2009 Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, S06001. ADSCrossRef Colak T, Qahwaji R. 2009 Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares. Space Weather 7, S06001. ADSCrossRef
14.
go back to reference Ahmed OW, Qahwaji R, Colak T, Higgins PA, Gallagher PT, Bloomfield DS. 2013 Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection. Solar Phys. 283, 157–175. ADSCrossRef Ahmed OW, Qahwaji R, Colak T, Higgins PA, Gallagher PT, Bloomfield DS. 2013 Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection. Solar Phys. 283, 157–175. ADSCrossRef
15.
go back to reference Song H, Tan C, Jing J, Wang H, Yurchyshyn V, Abramenko V. 2009 Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions. Solar Phys. 254, 101–125. ADSCrossRef Song H, Tan C, Jing J, Wang H, Yurchyshyn V, Abramenko V. 2009 Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions. Solar Phys. 254, 101–125. ADSCrossRef
16.
go back to reference Yu D, Huang X, Wang H, Cui Y, Hu Q, Zhou R. 2010 Short-term Solar Flare Level Prediction Using a Bayesian Network Approach. Astrophys. J. 710, 869–877. ADSCrossRef Yu D, Huang X, Wang H, Cui Y, Hu Q, Zhou R. 2010 Short-term Solar Flare Level Prediction Using a Bayesian Network Approach. Astrophys. J. 710, 869–877. ADSCrossRef
17.
go back to reference Guerra JA, Pulkkinen A, Uritsky VM. 2015 Ensemble forecasting of major solar flares: First results. Space Weather 13, 626–642. ADSCrossRef Guerra JA, Pulkkinen A, Uritsky VM. 2015 Ensemble forecasting of major solar flares: First results. Space Weather 13, 626–642. ADSCrossRef
18.
go back to reference Falconer DA. 2001 A prospective method for predicting coronal mass ejections from vector magnetograms. J. Geophys. Res. 106, 25185–25190. ADSCrossRef Falconer DA. 2001 A prospective method for predicting coronal mass ejections from vector magnetograms. J. Geophys. Res. 106, 25185–25190. ADSCrossRef
19.
go back to reference Cui Y, Li R, Zhang L, He Y, Wang H. 2006 Correlation Between Solar Flare Productivity and Photospheric Magnetic Field Properties. 1. Maximum Horizontal Gradient, Length of Neutral Line, Number of Singular Points. Solar Phys. 237, 45–59. ADSCrossRef Cui Y, Li R, Zhang L, He Y, Wang H. 2006 Correlation Between Solar Flare Productivity and Photospheric Magnetic Field Properties. 1. Maximum Horizontal Gradient, Length of Neutral Line, Number of Singular Points. Solar Phys. 237, 45–59. ADSCrossRef
20.
go back to reference Huang X, Wang HN. 2013 Solar flare prediction using highly stressed longitudinal magnetic field parameters. Research in Astronomy and Astrophysics 13, 351–358. ADSCrossRef Huang X, Wang HN. 2013 Solar flare prediction using highly stressed longitudinal magnetic field parameters. Research in Astronomy and Astrophysics 13, 351–358. ADSCrossRef
21.
go back to reference Huang X, Zhang L, Wang H, Li L. 2013 Improving the performance of solar flare prediction using active longitudes information. Astron. Astrophys. 549, A127. ADSCrossRef Huang X, Zhang L, Wang H, Li L. 2013 Improving the performance of solar flare prediction using active longitudes information. Astron. Astrophys. 549, A127. ADSCrossRef
22.
go back to reference Raboonik A, Safari H, Alipour N, Wheatland MS. 2017 Prediction of Solar Flares Using Unique Signatures of Magnetic Field Images. Astrophys. J. 834, 11. ADSCrossRef Raboonik A, Safari H, Alipour N, Wheatland MS. 2017 Prediction of Solar Flares Using Unique Signatures of Magnetic Field Images. Astrophys. J. 834, 11. ADSCrossRef
23.
go back to reference Yu D, Huang X, Wang H, Cui Y. 2009 Short-Term Solar Flare Prediction Using a Sequential Supervised Learning Method. Solar Phys. 255, 91–105. ADSCrossRef Yu D, Huang X, Wang H, Cui Y. 2009 Short-Term Solar Flare Prediction Using a Sequential Supervised Learning Method. Solar Phys. 255, 91–105. ADSCrossRef
24.
go back to reference Yu D, Huang X, Hu Q, Zhou R, Wang H, Cui Y. 2010 Short-term Solar Flare Prediction Using Multiresolution Predictors. Astrophys. J. 709, 321–326. ADSCrossRef Yu D, Huang X, Hu Q, Zhou R, Wang H, Cui Y. 2010 Short-term Solar Flare Prediction Using Multiresolution Predictors. Astrophys. J. 709, 321–326. ADSCrossRef
25.
go back to reference Huang X, Yu D, Hu Q, Wang H, Cui Y. 2010 Short-Term Solar Flare Prediction Using Predictor Teams. Solar Phys. 263, 175–184. ADSCrossRef Huang X, Yu D, Hu Q, Wang H, Cui Y. 2010 Short-Term Solar Flare Prediction Using Predictor Teams. Solar Phys. 263, 175–184. ADSCrossRef
26.
go back to reference Korsós MB, Baranyi T, Ludmány A. 2014 Pre-flare Dynamics of Sunspot Groups. Astrophys. J. 789, 107. ADSCrossRef Korsós MB, Baranyi T, Ludmány A. 2014 Pre-flare Dynamics of Sunspot Groups. Astrophys. J. 789, 107. ADSCrossRef
27.
go back to reference Korsós MB, Ludmány A, Erdélyi R, Baranyi T. 2015 On Flare Predictability Based on Sunspot Group Evolution. Astrophys. J. Lett. 802, L21. ADSCrossRef Korsós MB, Ludmány A, Erdélyi R, Baranyi T. 2015 On Flare Predictability Based on Sunspot Group Evolution. Astrophys. J. Lett. 802, L21. ADSCrossRef
28.
go back to reference Barnes G, Leka KD. 2008 Evaluating the Performance of Solar Flare Forecasting Methods. Astrophys. J. Lett. 688, L107. ADSCrossRef Barnes G, Leka KD. 2008 Evaluating the Performance of Solar Flare Forecasting Methods. Astrophys. J. Lett. 688, L107. ADSCrossRef
29.
go back to reference Barnes G, Leka KD, Schrijver CJ, Colak T, Qahwaji R, Ashamari OW, Yuan Y, Zhang J, McAteer RTJ, Bloomfield DS, Higgins PA, Gallagher PT, Falconer DA, Georgoulis MK, Wheatland MS, Balch C, Dunn T, Wagner EL. 2016 A Comparison of Flare Forecasting Methods. I. Results from the “All-Clear” Workshop. Astrophys. J. 829, 89. Barnes G, Leka KD, Schrijver CJ, Colak T, Qahwaji R, Ashamari OW, Yuan Y, Zhang J, McAteer RTJ, Bloomfield DS, Higgins PA, Gallagher PT, Falconer DA, Georgoulis MK, Wheatland MS, Balch C, Dunn T, Wagner EL. 2016 A Comparison of Flare Forecasting Methods. I. Results from the “All-Clear” Workshop. Astrophys. J. 829, 89.
32.
go back to reference Schmidhuber J. 2015 Deep learning in neural networks: An overview. Neural Networks 61, 85–117. CrossRef Schmidhuber J. 2015 Deep learning in neural networks: An overview. Neural Networks 61, 85–117. CrossRef
33.
go back to reference He K, Zhang X, Ren S, Sun J. 2015 Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence 37, 1904–1916. CrossRef He K, Zhang X, Ren S, Sun J. 2015 Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE transactions on pattern analysis and machine intelligence 37, 1904–1916. CrossRef
34.
go back to reference Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. 2014 Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv e-prints p. arXiv:1408.5093. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. 2014 Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv e-prints p. arXiv:1408.5093.
35.
go back to reference Murray SA, Bingham S, Sharpe M, Jackson DR. 2017 Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15, 577–588. ADSCrossRef Murray SA, Bingham S, Sharpe M, Jackson DR. 2017 Flare forecasting at the Met Office Space Weather Operations Centre. Space Weather 15, 577–588. ADSCrossRef
36.
go back to reference Muranushi T, Shibayama T, Muranushi YH, Isobe H, Nemoto S, Komazaki K, Shibata K. 2015 UFCORIN: A fully automated predictor of solar flares in GOES X-ray flux. Space Weather 13, 778–796. ADSCrossRef Muranushi T, Shibayama T, Muranushi YH, Isobe H, Nemoto S, Komazaki K, Shibata K. 2015 UFCORIN: A fully automated predictor of solar flares in GOES X-ray flux. Space Weather 13, 778–796. ADSCrossRef
37.
go back to reference Schröter EH. 1971 On Magnetic Fields in Sunspots and Active Regions. 43, 167. ADS Schröter EH. 1971 On Magnetic Fields in Sunspots and Active Regions. 43, 167. ADS
38.
go back to reference Schunker H, Cally P. 2006 Magnetic field inclination and atmospheric oscillations above solar active regions. Monthly Notices of the Royal Astronomical Society 372, 551–564. ADSCrossRef Schunker H, Cally P. 2006 Magnetic field inclination and atmospheric oscillations above solar active regions. Monthly Notices of the Royal Astronomical Society 372, 551–564. ADSCrossRef
39.
go back to reference Athay RG. 1976 The solar chromosphere and corona: Quiet sun. 53. Athay RG. 1976 The solar chromosphere and corona: Quiet sun. 53.
40.
go back to reference Lee J. 2007 Radio Emissions from Solar Active Regions. Space Science Reviews 133, 73–102. ADSCrossRef Lee J. 2007 Radio Emissions from Solar Active Regions. Space Science Reviews 133, 73–102. ADSCrossRef
41.
go back to reference Si-qing L, Qiu-zhen Z, Jing W, Xian-kang D. 2010 Modeling Research of the 27-day Forecast of 10.7cm Solar Radio Flux (I). Chinese Astronomy and Astrophysics 34, 305–315. ADSCrossRef Si-qing L, Qiu-zhen Z, Jing W, Xian-kang D. 2010 Modeling Research of the 27-day Forecast of 10.7cm Solar Radio Flux (I). Chinese Astronomy and Astrophysics 34, 305–315. ADSCrossRef
42.
go back to reference Huang C, Liu DD, Wang JS. 2009 Forecast daily indices of solar activity, F10. 7, using support vector regression method. Research in Astronomy and Astrophysics 9. Huang C, Liu DD, Wang JS. 2009 Forecast daily indices of solar activity, F10. 7, using support vector regression method. Research in Astronomy and Astrophysics 9.
43.
go back to reference Lei L, Zhong Q, Wang J, Shi L, Liu S. 2019 The Mid-Term Forecast Method of F10.7 Based on Extreme Ultraviolet Images. Advances in Astronomy 2019, 5604092. Lei L, Zhong Q, Wang J, Shi L, Liu S. 2019 The Mid-Term Forecast Method of F10.7 Based on Extreme Ultraviolet Images. Advances in Astronomy 2019, 5604092.
44.
go back to reference Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L, Savarese S. 2016 Social LSTM: Human Trajectory Prediction in Crowded Spaces. pp. 961–971. Alahi A, Goel K, Ramanathan V, Robicquet A, Fei-Fei L, Savarese S. 2016 Social LSTM: Human Trajectory Prediction in Crowded Spaces. pp. 961–971.
45.
go back to reference Graves A, Jaitly N. 2014 Towards end-to-end speech recognition with recurrent neural networks. 31st International Conference on Machine Learning, ICML 2014 5, 1764–1772. Graves A, Jaitly N. 2014 Towards end-to-end speech recognition with recurrent neural networks. 31st International Conference on Machine Learning, ICML 2014 5, 1764–1772.
46.
go back to reference Sutskever I, Vinyals O, Le QV. 2014 Sequence to Sequence Learning with Neural Networks. CoRR abs/1409.3215. Sutskever I, Vinyals O, Le QV. 2014 Sequence to Sequence Learning with Neural Networks. CoRR abs/1409.3215.
47.
go back to reference Adhikari R, Agrawal R. 2013 An Introductory Study on Time series Modeling and Forecasting. Adhikari R, Agrawal R. 2013 An Introductory Study on Time series Modeling and Forecasting.
Metadata
Title
Deep Learning in Solar Forecasting Tasks
Authors
Long Xu
Yihua Yan
Xin Huang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2746-1_6

Premium Partner