Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

3. Deep Learning in Solar Image Classification Tasks

Authors : Long Xu, Yihua Yan, Xin Huang

Published in: Deep Learning in Solar Astronomy

Publisher: Springer Nature Singapore

share
SHARE

Abstract

The exponential increasing of data being collected in astronomy has raised a big data challenge. Mining valuable information timely and efficiently from massive raw data is highly demanded. Even simple binary classification of collected raw data is of great importance, reducing the burden of the following data processing. Inspired by the success of image classification with deep learning, we investigated solar radio spectrum classification using deep learning, including the premier deep belief network (DBN), the most popular convolutional neural network (CNN) and long short-term memory (LSTM) network. For model training, a database of solar spectrum was established and published to the public. As far as we know, it is the first one in the world. The database contains 8816 spectrums with different image patterns which represent different solar radio mechanisms. Then, each spectrum was given a label by the invited experts of solar radio astronomy.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Fu Q, Ji H, Qin Z, Xu Z, Xia Z, Wu H, Liu Y, Yan Y, Huang G, Chen Z et al. 2004 A new solar broadband radio spectrometer (SBRS) in China. Solar Physics 222, 167–173. ADSCrossRef Fu Q, Ji H, Qin Z, Xu Z, Xia Z, Wu H, Liu Y, Yan Y, Huang G, Chen Z et al. 2004 A new solar broadband radio spectrometer (SBRS) in China. Solar Physics 222, 167–173. ADSCrossRef
2.
go back to reference Chen Z, Ma L, Xu L, Tan C, Yan Y. 2016 Imaging and representation learning of solar radio spectrums for classification. Multimedia Tools and Applications 75, 2859–2875. CrossRef Chen Z, Ma L, Xu L, Tan C, Yan Y. 2016 Imaging and representation learning of solar radio spectrums for classification. Multimedia Tools and Applications 75, 2859–2875. CrossRef
4.
go back to reference Salakhutdinov R, Murray I. 2008 On the quantitative analysis of deep belief networks. In Cohen WW, McCallum A, Roweis ST, editors, Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008 vol. 307 ACM International Conference Proceeding Series pp. 872–879. ACM. Salakhutdinov R, Murray I. 2008 On the quantitative analysis of deep belief networks. In Cohen WW, McCallum A, Roweis ST, editors, Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008 vol. 307 ACM International Conference Proceeding Series pp. 872–879. ACM.
6.
go back to reference Suykens JA, Vandewalle J. 1999 Least squares support vector machine classifiers. Neural processing letters 9, 293–300. CrossRef Suykens JA, Vandewalle J. 1999 Least squares support vector machine classifiers. Neural processing letters 9, 293–300. CrossRef
7.
go back to reference Jolliffe I. 2011 Principal component analysis. In International encyclopedia of statistical science pp. 1094–1096. Springer. Jolliffe I. 2011 Principal component analysis. In International encyclopedia of statistical science pp. 1094–1096. Springer.
8.
go back to reference Wold S, Esbensen K, Geladi P. 1987 Principal component analysis. Chemometrics and intelligent laboratory systems 2, 37–52. CrossRef Wold S, Esbensen K, Geladi P. 1987 Principal component analysis. Chemometrics and intelligent laboratory systems 2, 37–52. CrossRef
9.
go back to reference Vincent P, Larochelle H, Bengio Y, Manzagol PA. 2008 Extracting and Composing Robust Features with Denoising Autoencoders. In Machine Learning, 25th International Conference on pp. 1096–1103 New York, NY, USA. ACM. Vincent P, Larochelle H, Bengio Y, Manzagol PA. 2008 Extracting and Composing Robust Features with Denoising Autoencoders. In Machine Learning, 25th International Conference on pp. 1096–1103 New York, NY, USA. ACM.
10.
go back to reference Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. 2010 Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research 11, 3371–3408. MathSciNetMATH Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. 2010 Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of machine learning research 11, 3371–3408. MathSciNetMATH
11.
go back to reference Chen Z, Ma L, Xu L, Weng Y, Yan Y. 2015 Multimodal learning for classification of solar radio spectrum. In Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on pp. 1035–1040. IEEE. Chen Z, Ma L, Xu L, Weng Y, Yan Y. 2015 Multimodal learning for classification of solar radio spectrum. In Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conference on pp. 1035–1040. IEEE.
12.
go back to reference Ma L, Chen Z, Xu L, Yan Y. 2017 Multimodal deep learning for solar radio burst classification. Pattern Recognition 61, 573–582. ADSCrossRef Ma L, Chen Z, Xu L, Yan Y. 2017 Multimodal deep learning for solar radio burst classification. Pattern Recognition 61, 573–582. ADSCrossRef
13.
go back to reference Vincent P, Larochelle H, Bengio Y, Manzagol PA. 2008 Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning pp. 1096–1103. ACM. Vincent P, Larochelle H, Bengio Y, Manzagol PA. 2008 Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning pp. 1096–1103. ACM.
14.
go back to reference Guillaumin M, Verbeek J, Schmid C. 2010 Multimodal semi-supervised learning for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on pp. 902–909. IEEE. Guillaumin M, Verbeek J, Schmid C. 2010 Multimodal semi-supervised learning for image classification. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on pp. 902–909. IEEE.
15.
go back to reference Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. 2011 Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11) pp. 689–696. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. 2011 Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11) pp. 689–696.
16.
go back to reference Fawcett T. 2006 An introduction to ROC analysis. Pattern recognition letters 27, 861–874. ADSCrossRef Fawcett T. 2006 An introduction to ROC analysis. Pattern recognition letters 27, 861–874. ADSCrossRef
17.
go back to reference Jalali A, Sanghavi S, Ruan C, Ravikumar P. 2010 A Dirty Model for Multi-task Learning. In Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A, editors, Advances in Neural Information Processing Systems vol. 23. Curran Associates, Inc. Jalali A, Sanghavi S, Ruan C, Ravikumar P. 2010 A Dirty Model for Multi-task Learning. In Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A, editors, Advances in Neural Information Processing Systems vol. 23. Curran Associates, Inc.
18.
go back to reference Chen S, Xu L, Ma L, Zhang W, Chen Z, Yan Y. 2017 Convolutional neural network for classification of solar radio spectrum. In Multimedia & Expo Workshops (ICMEW), 2017 IEEE International Conference on pp. 198–201. IEEE. Chen S, Xu L, Ma L, Zhang W, Chen Z, Yan Y. 2017 Convolutional neural network for classification of solar radio spectrum. In Multimedia & Expo Workshops (ICMEW), 2017 IEEE International Conference on pp. 198–201. IEEE.
19.
go back to reference Hochreiter S, Schmidhuber J. 1997 Long short-term memory. Neural computation 9, 1735–1780. CrossRef Hochreiter S, Schmidhuber J. 1997 Long short-term memory. Neural computation 9, 1735–1780. CrossRef
20.
go back to reference Gers FA, Schmidhuber J, Cummins F. 1999 Learning to forget: Continual prediction with LSTM. Gers FA, Schmidhuber J, Cummins F. 1999 Learning to forget: Continual prediction with LSTM.
21.
go back to reference Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014 Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. 2014 Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
22.
go back to reference Graves A, Jaitly N. 2014 Towards end-to-end speech recognition with recurrent neural networks. In International Conference on Machine Learning pp. 1764–1772. Graves A, Jaitly N. 2014 Towards end-to-end speech recognition with recurrent neural networks. In International Conference on Machine Learning pp. 1764–1772.
23.
go back to reference Gers FA, Schraudolph NN, Schmidhuber J. 2002 Learning precise timing with LSTM recurrent networks. Journal of machine learning research 3, 115–143. MathSciNetMATH Gers FA, Schraudolph NN, Schmidhuber J. 2002 Learning precise timing with LSTM recurrent networks. Journal of machine learning research 3, 115–143. MathSciNetMATH
24.
go back to reference Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. 2017 LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems 28, 2222–2232. MathSciNetCrossRef Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. 2017 LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems 28, 2222–2232. MathSciNetCrossRef
25.
go back to reference Jozefowicz R, Zaremba W, Sutskever I. 2015 An empirical exploration of recurrent network architectures. In International Conference on Machine Learning pp. 2342–2350. Jozefowicz R, Zaremba W, Sutskever I. 2015 An empirical exploration of recurrent network architectures. In International Conference on Machine Learning pp. 2342–2350.
Metadata
Title
Deep Learning in Solar Image Classification Tasks
Authors
Long Xu
Yihua Yan
Xin Huang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2746-1_3

Premium Partner