Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

5. Deep Learning in Solar Image Generation Tasks

Authors : Long Xu, Yihua Yan, Xin Huang

Published in: Deep Learning in Solar Astronomy

Publisher: Springer Nature Singapore

share
SHARE

Abstract

It has been witnessed that deep learning has been applied to classification in previous chapters. In fact, deep learning also demonstrated great ability of image generation which is more challenging than classification. In this chapter, several applications of deep learning in solar image enhancement, reconstruction and processing are presented, including image deconvolution of solar radioheliograph, desaturation of solar imaging, generating magnetogram, image super-resolution. These tasks are all concerned with image generation, by employing generative neural networks. As a representative of generative networks, GAN was widely exploited in image generation tasks. It can generate high fidelity and photo-realistic content mainly owning to an adversarial loss.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
1.
go back to reference Högbom J. 1974 Aperture synthesis with a non-regular distribution of interferometer baselines. Astronomy and Astrophysics Supplement Series 15, 417. ADS Högbom J. 1974 Aperture synthesis with a non-regular distribution of interferometer baselines. Astronomy and Astrophysics Supplement Series 15, 417. ADS
2.
go back to reference Wakker BP, Schwarz U. 1988 The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry. Astronomy and Astrophysics 200, 312–322. ADS Wakker BP, Schwarz U. 1988 The Multi-Resolution CLEAN and its application to the short-spacing problem in interferometry. Astronomy and Astrophysics 200, 312–322. ADS
3.
go back to reference Cornwell TJ. 2008 Multiscale CLEAN deconvolution of radio synthesis images. IEEE Journal of Selected Topics in Signal Processing 2, 793–801. ADSCrossRef Cornwell TJ. 2008 Multiscale CLEAN deconvolution of radio synthesis images. IEEE Journal of Selected Topics in Signal Processing 2, 793–801. ADSCrossRef
4.
go back to reference Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-to-Image Translation with Conditional Adversarial Networks. arXiv e-prints. Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-to-Image Translation with Conditional Adversarial Networks. arXiv e-prints.
5.
go back to reference Johnson J, Alahi A, Fei-Fei L. 2016 Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Lecture Notes in Computer Science pp. 694–C711. Johnson J, Alahi A, Fei-Fei L. 2016 Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Lecture Notes in Computer Science pp. 694–C711.
6.
go back to reference Simonyan K, Zisserman A. 2015 Very Deep Convolutional Networks for Large-Scale Image Recognition. In International Conference on Learning Representations. Simonyan K, Zisserman A. 2015 Very Deep Convolutional Networks for Large-Scale Image Recognition. In International Conference on Learning Representations.
7.
go back to reference Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J. 2017 DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. arXiv e-prints. Kupyn O, Budzan V, Mykhailych M, Mishkin D, Matas J. 2017 DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. arXiv e-prints.
9.
go back to reference Nah S, Kim TH, Lee KM. 2016 Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring. arXiv e-prints. Nah S, Kim TH, Lee KM. 2016 Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring. arXiv e-prints.
10.
go back to reference Yan Q, Wang W. 2017 DCGANs for image super-resolution, denoising and debluring. Adv. Neural Inf. Process. Syst. 8, 487–495. Yan Q, Wang W. 2017 DCGANs for image super-resolution, denoising and debluring. Adv. Neural Inf. Process. Syst. 8, 487–495.
11.
go back to reference Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al. 2004 Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13, 600–612. ADSCrossRef Wang Z, Bovik AC, Sheikh HR, Simoncelli EP et al. 2004 Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13, 600–612. ADSCrossRef
12.
go back to reference Lemen JR, Akin DJ, Boerner PF, Chou C, Drake JF, Duncan DW, Edwards CG, Friedlaender FM, Heyman GF, Hurlburt NE et al. 2011 The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). In The Solar Dynamics Observatory pp. 17–40. Springer. Lemen JR, Akin DJ, Boerner PF, Chou C, Drake JF, Duncan DW, Edwards CG, Friedlaender FM, Heyman GF, Hurlburt NE et al. 2011 The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). In The Solar Dynamics Observatory pp. 17–40. Springer.
13.
go back to reference Pesnell WD, Thompson BJ, Chamberlin PC. 2011 The solar dynamics observatory (SDO). In The Solar Dynamics Observatory pp. 3–15. Springer. Pesnell WD, Thompson BJ, Chamberlin PC. 2011 The solar dynamics observatory (SDO). In The Solar Dynamics Observatory pp. 3–15. Springer.
14.
go back to reference Boerner P, Edwards C, Lemen J, Rausch A, Schrijver C, Shine R, Shing L, Stern R, Tarbell T, Wolfson CJ et al. 2011 Initial calibration of the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). In The Solar Dynamics Observatory pp. 41–66. Springer. Boerner P, Edwards C, Lemen J, Rausch A, Schrijver C, Shine R, Shing L, Stern R, Tarbell T, Wolfson CJ et al. 2011 Initial calibration of the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). In The Solar Dynamics Observatory pp. 41–66. Springer.
15.
go back to reference Scherrer PH, Schou J, Bush R, Kosovichev A, Bogart R, Hoeksema J, Liu Y, Duvall T, Zhao J, Schrijver C et al. 2012 The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Physics 275, 207–227. ADSCrossRef Scherrer PH, Schou J, Bush R, Kosovichev A, Bogart R, Hoeksema J, Liu Y, Duvall T, Zhao J, Schrijver C et al. 2012 The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Physics 275, 207–227. ADSCrossRef
16.
go back to reference Guastavino S, Piana M, Massone AM, Schwartz R, Benvenuto F. 2019 Desaturating EUV observations of solar flaring storms. arXiv preprint arXiv:1904.04211. Guastavino S, Piana M, Massone AM, Schwartz R, Benvenuto F. 2019 Desaturating EUV observations of solar flaring storms. arXiv preprint arXiv:1904.04211.
17.
go back to reference Sabrina G, Federico B. 2018 A consistent and numerically efficient variable selection method for sparse Poisson regression with applications to learning and signal recovery. Statistics and Computing 29, 1–16. MathSciNet Sabrina G, Federico B. 2018 A consistent and numerically efficient variable selection method for sparse Poisson regression with applications to learning and signal recovery. Statistics and Computing 29, 1–16. MathSciNet
18.
go back to reference Yu F, Koltun V. 2015 Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122. Yu F, Koltun V. 2015 Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.
19.
go back to reference Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. 2016 Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 2536–2544. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. 2016 Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 2536–2544.
20.
go back to reference Yang C, Lu X, Lin Z, Shechtman E, Wang O, Li H. 2017 High-resolution image inpainting using multi-scale neural patch synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 6721–6729. Yang C, Lu X, Lin Z, Shechtman E, Wang O, Li H. 2017 High-resolution image inpainting using multi-scale neural patch synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp. 6721–6729.
21.
go back to reference Iizuka S, Simo-Serra E, Ishikawa H. 2017 Globally and locally consistent image completion. ACM Transactions on Graphics (ToG) 36, 107. CrossRef Iizuka S, Simo-Serra E, Ishikawa H. 2017 Globally and locally consistent image completion. ACM Transactions on Graphics (ToG) 36, 107. CrossRef
22.
go back to reference Song Y, Yang C, Lin Z, Liu X, Huang Q, Li H, Jay Kuo CC. 2018 Contextual-based image inpainting: Infer, match, and translate. In Proceedings of the European Conference on Computer Vision (ECCV) pp. 3–19. Song Y, Yang C, Lin Z, Liu X, Huang Q, Li H, Jay Kuo CC. 2018 Contextual-based image inpainting: Infer, match, and translate. In Proceedings of the European Conference on Computer Vision (ECCV) pp. 3–19.
23.
go back to reference Liu G, Reda FA, Shih KJ, Wang TC, Tao A, Catanzaro B. 2018 Image inpainting for irregular holes using partial convolutions. In Proceedings of the European Conference on Computer Vision (ECCV) pp. 85–100. Liu G, Reda FA, Shih KJ, Wang TC, Tao A, Catanzaro B. 2018 Image inpainting for irregular holes using partial convolutions. In Proceedings of the European Conference on Computer Vision (ECCV) pp. 85–100.
24.
go back to reference Yan Z, Li X, Li M, Zuo W, Shan S. 2018 Shift-net: Image inpainting via deep feature rearrangement. In Proceedings of the European Conference on Computer Vision (ECCV) pp. 1–17. Yan Z, Li X, Li M, Zuo W, Shan S. 2018 Shift-net: Image inpainting via deep feature rearrangement. In Proceedings of the European Conference on Computer Vision (ECCV) pp. 1–17.
25.
go back to reference Xiao Q, Li G, Chen Q. 2018 Deep Inception Generative Network for Cognitive Image Inpainting. arXiv preprint arXiv:1812.01458. Xiao Q, Li G, Chen Q. 2018 Deep Inception Generative Network for Cognitive Image Inpainting. arXiv preprint arXiv:1812.01458.
26.
go back to reference Nazeri K, Ng E, Joseph T, Qureshi F, Ebrahimi M. 2019 EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning. arXiv preprint arXiv:1901.00212. Nazeri K, Ng E, Joseph T, Qureshi F, Ebrahimi M. 2019 EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning. arXiv preprint arXiv:1901.00212.
27.
go back to reference Zhao D, Xu L, Chen L, Yan Y, Duan LY. 2019 Mask-Pix2Pix Network for Overexposure Region Recovery of Solar Image. Advances in Astronomy 2019, 5343254. CrossRef Zhao D, Xu L, Chen L, Yan Y, Duan LY. 2019 Mask-Pix2Pix Network for Overexposure Region Recovery of Solar Image. Advances in Astronomy 2019, 5343254. CrossRef
28.
go back to reference Isola P, Zhu JY, Zhou T, Efros AA. 2017 Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 1125–1134. Isola P, Zhu JY, Zhou T, Efros AA. 2017 Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition pp. 1125–1134.
29.
go back to reference Ronneberger O, Fischer P, Brox T. 2015 U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention pp. 234–241. Springer. Ronneberger O, Fischer P, Brox T. 2015 U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention pp. 234–241. Springer.
30.
go back to reference Mirza M, Osindero S. 2014 Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784. Mirza M, Osindero S. 2014 Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.
31.
go back to reference Luo P, Ren J, Peng Z. 2018 Differentiable learning-to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779. Luo P, Ren J, Peng Z. 2018 Differentiable learning-to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779.
32.
go back to reference Ioffe S, Szegedy C. 2015 Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. Ioffe S, Szegedy C. 2015 Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
33.
go back to reference Lei Ba J, Kiros JR, Hinton GE. 2016 Layer normalization. arXiv preprint arXiv:1607.06450. Lei Ba J, Kiros JR, Hinton GE. 2016 Layer normalization. arXiv preprint arXiv:1607.06450.
34.
go back to reference Ulyanov D, Vedaldi A, Lempitsky V. 2016 Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022. Ulyanov D, Vedaldi A, Lempitsky V. 2016 Instance normalization: The missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022.
35.
go back to reference Kucuk A, Banda JM, Angryk RA. 2017 A large-scale solar dynamics observatory image dataset for computer vision applications. Scientific data 4, 170096. CrossRef Kucuk A, Banda JM, Angryk RA. 2017 A large-scale solar dynamics observatory image dataset for computer vision applications. Scientific data 4, 170096. CrossRef
36.
go back to reference Huang JB, Kang SB, Ahuja N, Kopf J. 2014 Image completion using planar structure guidance. ACM Transactions on graphics (TOG) 33, 129. Huang JB, Kang SB, Ahuja N, Kopf J. 2014 Image completion using planar structure guidance. ACM Transactions on graphics (TOG) 33, 129.
38.
go back to reference Galvez R, Fouhey DF, Jin M, Szenicer A, Muñoz-Jaramillo A, Cheung MCM, Wright PJ, Bobra MG, Liu Y, Mason J, Thomas R. 2019 A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission. The Astrophysical Journal Supplement Series 242, 7. ADSCrossRef Galvez R, Fouhey DF, Jin M, Szenicer A, Muñoz-Jaramillo A, Cheung MCM, Wright PJ, Bobra MG, Liu Y, Mason J, Thomas R. 2019 A Machine-learning Data Set Prepared from the NASA Solar Dynamics Observatory Mission. The Astrophysical Journal Supplement Series 242, 7. ADSCrossRef
39.
go back to reference Kim T, Park E, Lee H, Moon YJ, Bae SH, Lim D, Jang S, Kim L, Cho IH, Choi M, Cho KS. 2019 Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nature Astronomy 3, 397–400. ADSCrossRef Kim T, Park E, Lee H, Moon YJ, Bae SH, Lim D, Jang S, Kim L, Cho IH, Choi M, Cho KS. 2019 Solar farside magnetograms from deep learning analysis of STEREO/EUVI data. Nature Astronomy 3, 397–400. ADSCrossRef
41.
go back to reference Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-to-Image Translation with Conditional Adversarial Networks. Isola P, Zhu JY, Zhou T, Efros AA. 2016 Image-to-Image Translation with Conditional Adversarial Networks.
42.
go back to reference Cho K, van Merriënboer B, Bahdanau D, Bengio Y. 2014a On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation pp. 103–111 Doha, Qatar. Association for Computational Linguistics. Cho K, van Merriënboer B, Bahdanau D, Bengio Y. 2014a On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation pp. 103–111 Doha, Qatar. Association for Computational Linguistics.
43.
go back to reference Cho K, van Merriënboer B, Bahdanau D, Bengio Y. 2014b On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation pp. 103–111 Doha, Qatar. Association for Computational Linguistics. Cho K, van Merriënboer B, Bahdanau D, Bengio Y. 2014b On the Properties of Neural Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation pp. 103–111 Doha, Qatar. Association for Computational Linguistics.
44.
go back to reference Frank, Hill, George, Fischer, Jennifer, Grier, John, W., Leibacher, and H. 1994 The global oscillation network group site survey. Solar Physics. Frank, Hill, George, Fischer, Jennifer, Grier, John, W., Leibacher, and H. 1994 The global oscillation network group site survey. Solar Physics.
45.
go back to reference 2011 Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Physics. 2011 Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO). Solar Physics.
Metadata
Title
Deep Learning in Solar Image Generation Tasks
Authors
Long Xu
Yihua Yan
Xin Huang
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2746-1_5

Premium Partner