Skip to main content
Top
Published in: Mobile Networks and Applications 2/2020

30-12-2019

Deep Learning Models for Real-time Human Activity Recognition with Smartphones

Authors: Shaohua Wan, Lianyong Qi, Xiaolong Xu, Chao Tong, Zonghua Gu

Published in: Mobile Networks and Applications | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

With the widespread application of mobile edge computing (MEC), MEC is serving as a bridge to narrow the gaps between medical staff and patients. Relatedly, MEC is also moving toward supervising individual health in an automatic and intelligent manner. One of the main MEC technologies in healthcare monitoring systems is human activity recognition (HAR). Built-in multifunctional sensors make smartphones a ubiquitous platform for acquiring and analyzing data, thus making it possible for smartphones to perform HAR. The task of recognizing human activity using a smartphone’s built-in accelerometer has been well resolved, but in practice, with the multimodal and high-dimensional sensor data, these traditional methods fail to identify complicated and real-time human activities. This paper designs a smartphone inertial accelerometer-based architecture for HAR. When the participants perform typical daily activities, the smartphone collects the sensory data sequence, extracts the high-efficiency features from the original data, and then obtains the user’s physical behavior data through multiple three-axis accelerometers. The data are preprocessed by denoising, normalization and segmentation to extract valuable feature vectors. In addition, a real-time human activity classification method based on a convolutional neural network (CNN) is proposed, which uses a CNN for local feature extraction. Finally, CNN, LSTM, BLSTM, MLP and SVM models are utilized on the UCI and Pamap2 datasets. We explore how to train deep learning methods and demonstrate how the proposed method outperforms the others on two large public datasets: UCI and Pamap2.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Gao Z, Xuan H, Zhang H, Wan S, Choo KR (2019) Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet of Things Journal, pp 1–1 Gao Z, Xuan H, Zhang H, Wan S, Choo KR (2019) Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet of Things Journal, pp 1–1
2.
go back to reference Ding S, Qu S, Xi Y, Sangaiah AK, Wan S (2019) Image caption generation with high-level image features. Pattern Recognition Letters 123:89–95CrossRef Ding S, Qu S, Xi Y, Sangaiah AK, Wan S (2019) Image caption generation with high-level image features. Pattern Recognition Letters 123:89–95CrossRef
3.
go back to reference Gao H, Huang W, Yang X, Duan Y, Yin Y (2018) Toward service selection for workflow reconfiguration: An interface-based computing solution. Futur Gener Comput Syst 87:298–311CrossRef Gao H, Huang W, Yang X, Duan Y, Yin Y (2018) Toward service selection for workflow reconfiguration: An interface-based computing solution. Futur Gener Comput Syst 87:298–311CrossRef
4.
go back to reference Xu Y, Yin J, Huang J, Yin Y (2018) Hierarchical topic modeling with automatic knowledge mining. Expert Syst Appl 103:106–117CrossRef Xu Y, Yin J, Huang J, Yin Y (2018) Hierarchical topic modeling with automatic knowledge mining. Expert Syst Appl 103:106–117CrossRef
5.
go back to reference Ding S, Qu S, Xi Y, Wan S (2019) A long video caption generation algorithm for big video data retrieval. Futur Gener Comput Syst 93:583–595CrossRef Ding S, Qu S, Xi Y, Wan S (2019) A long video caption generation algorithm for big video data retrieval. Futur Gener Comput Syst 93:583–595CrossRef
6.
go back to reference Zhang R, Xie P, Wang C, Liu G, Wan S (2019) Classifying transportation mode and speed from trajectory data via deep multi-scale learning. Computer Networks 162:106861CrossRef Zhang R, Xie P, Wang C, Liu G, Wan S (2019) Classifying transportation mode and speed from trajectory data via deep multi-scale learning. Computer Networks 162:106861CrossRef
7.
go back to reference Gao H, Duan Y, Miao H, Yin Y (2017) An approach to data consistency checking for the dynamic replacement of service process. IEEE Access 5:11700–11711CrossRef Gao H, Duan Y, Miao H, Yin Y (2017) An approach to data consistency checking for the dynamic replacement of service process. IEEE Access 5:11700–11711CrossRef
8.
go back to reference He L, Chen C, Zhang T, Zhu H, Wan S (2018) Wearable depth camera: monocular depth estimation via sparse optimization under weak supervision. IEEE Access 6:41337–41345CrossRef He L, Chen C, Zhang T, Zhu H, Wan S (2018) Wearable depth camera: monocular depth estimation via sparse optimization under weak supervision. IEEE Access 6:41337–41345CrossRef
9.
go back to reference Ronao CA, Cho S-B (2016) Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst Appl 59:235–244CrossRef Ronao CA, Cho S-B (2016) Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst Appl 59:235–244CrossRef
10.
go back to reference Hassan MM, Uddin MZ, Mohamed A, Almogren A (2018) A robust human activity recognition system using smartphone sensors and deep learning. Futur Gener Comput Syst 81:307–313CrossRef Hassan MM, Uddin MZ, Mohamed A, Almogren A (2018) A robust human activity recognition system using smartphone sensors and deep learning. Futur Gener Comput Syst 81:307–313CrossRef
11.
go back to reference Ignatov A (2018) Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl Soft Comput 62:915–922CrossRef Ignatov A (2018) Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl Soft Comput 62:915–922CrossRef
12.
go back to reference Wang L, Zhen H, Fang X, Wan S, Ding W, Guo Y (2019) A unified two-parallel-branch deep neural network for joint gland contour and segmentation learning. Futur Gener Comput Syst 100:316–324CrossRef Wang L, Zhen H, Fang X, Wan S, Ding W, Guo Y (2019) A unified two-parallel-branch deep neural network for joint gland contour and segmentation learning. Futur Gener Comput Syst 100:316–324CrossRef
13.
go back to reference Nweke HF, Teh YW, Al-Garadi MA, Alo UR (2018) Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Systems with Applications Nweke HF, Teh YW, Al-Garadi MA, Alo UR (2018) Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Systems with Applications
14.
go back to reference Lee D-G, Lee S-W (2019) Prediction of partially observed human activity based on pre-trained deep representation. Pattern Recogn 85:198–206CrossRef Lee D-G, Lee S-W (2019) Prediction of partially observed human activity based on pre-trained deep representation. Pattern Recogn 85:198–206CrossRef
15.
go back to reference Yang Y, Hou C, Lang Y, Guan D, Huang D, Xu J (2019) Open-set human activity recognition based on micro-doppler signatures. Pattern Recogn 85:60–69CrossRef Yang Y, Hou C, Lang Y, Guan D, Huang D, Xu J (2019) Open-set human activity recognition based on micro-doppler signatures. Pattern Recogn 85:60–69CrossRef
16.
go back to reference Saini R, Kumar P, Roy PP, Dogra DP (2018) A novel framework of continuous human-activity recognition using kinect. Neurocomputing Saini R, Kumar P, Roy PP, Dogra DP (2018) A novel framework of continuous human-activity recognition using kinect. Neurocomputing
17.
go back to reference Khan MUS, Abbas A, Ali M, Jawad M, Khan SU, Li K, Zomaya AY (2018) On the correlation of sensor location and human activity recognition in body area networks (bans). IEEE Syst J 12(1):82–91CrossRef Khan MUS, Abbas A, Ali M, Jawad M, Khan SU, Li K, Zomaya AY (2018) On the correlation of sensor location and human activity recognition in body area networks (bans). IEEE Syst J 12(1):82–91CrossRef
18.
go back to reference Chen Z, Zhang L, Cao Z, Guo J (2018) Distilling the knowledge from handcrafted features for human activity recognition. IEEE Transactions on Industrial Informatics Chen Z, Zhang L, Cao Z, Guo J (2018) Distilling the knowledge from handcrafted features for human activity recognition. IEEE Transactions on Industrial Informatics
19.
go back to reference Khalifa S, Lan G, Hassan M, Seneviratne A, Das SK (2018) Harke: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Trans Mob Comput 17(6):1353–1368CrossRef Khalifa S, Lan G, Hassan M, Seneviratne A, Das SK (2018) Harke: Human activity recognition from kinetic energy harvesting data in wearable devices. IEEE Trans Mob Comput 17(6):1353–1368CrossRef
20.
go back to reference Lv M, Chen L, Chen T, Chen G (2018) Bi-view semi-supervised learning based semantic human activity recognition using accelerometers. IEEE Transactions on Mobile Computing Lv M, Chen L, Chen T, Chen G (2018) Bi-view semi-supervised learning based semantic human activity recognition using accelerometers. IEEE Transactions on Mobile Computing
21.
go back to reference Cheng W, Erfani SM, Zhang R, Kotagiri R (2018) Learning datum-wise sampling frequency for energy-efficient human activity recognition. In: AAAI Cheng W, Erfani SM, Zhang R, Kotagiri R (2018) Learning datum-wise sampling frequency for energy-efficient human activity recognition. In: AAAI
22.
go back to reference Rokni SA, Nourollahi M, Ghasemzadeh H (2018) Personalized human activity recognition using convolutional neural networks. arXiv:1801.08252 Rokni SA, Nourollahi M, Ghasemzadeh H (2018) Personalized human activity recognition using convolutional neural networks. arXiv:1801.​08252
23.
go back to reference Yin Y, Chen L, Xu Y, Wan J, Zhang H, Mai Z (2019) Qos prediction for service recommendation with deep feature learning in edge computing environment. Mobile Networks and Applications, pp 1–11 Yin Y, Chen L, Xu Y, Wan J, Zhang H, Mai Z (2019) Qos prediction for service recommendation with deep feature learning in edge computing environment. Mobile Networks and Applications, pp 1–11
24.
go back to reference Gao Z, Wang D, Wan S, Zhang H, Wang Y (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3d object retrieval. Futur Gener Comput Syst 94:641–653CrossRef Gao Z, Wang D, Wan S, Zhang H, Wang Y (2019) Cognitive-inspired class-statistic matching with triple-constrain for camera free 3d object retrieval. Futur Gener Comput Syst 94:641–653CrossRef
25.
go back to reference Wan S, Zhao Y, Wang T, Gu Z, Abbasi QH, Choo K-KR (2019) Multi-dimensional data indexing and range query processing via voronoi diagram for internet of things. Futur Gener Comput Syst 91:382–391CrossRef Wan S, Zhao Y, Wang T, Gu Z, Abbasi QH, Choo K-KR (2019) Multi-dimensional data indexing and range query processing via voronoi diagram for internet of things. Futur Gener Comput Syst 91:382–391CrossRef
26.
go back to reference Gao H, Mao S, Huang W, Yang X (2018) Applying probabilistic model checking to financial production risk evaluation and control: A case study of alibaba’s yu’e bao. IEEE Transactions on Computational Social Systems 99:1–11 Gao H, Mao S, Huang W, Yang X (2018) Applying probabilistic model checking to financial production risk evaluation and control: A case study of alibaba’s yu’e bao. IEEE Transactions on Computational Social Systems 99:1–11
27.
go back to reference Chen Y, Deng S, Ma H, Yin J (2019) Deploying data-intensive applications with multiple services components on edge. Mobile Networks and Applications, pp 1–16 Chen Y, Deng S, Ma H, Yin J (2019) Deploying data-intensive applications with multiple services components on edge. Mobile Networks and Applications, pp 1–16
28.
go back to reference Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) A Public Domain Dataset for Human Activity Recognition Using Smartphones. In: Esann Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2013) A Public Domain Dataset for Human Activity Recognition Using Smartphones. In: Esann
29.
go back to reference Ghio A, Oneto L (2014) Byte the bullet: Learning on real-world computing architectures. In: ESANN Ghio A, Oneto L (2014) Byte the bullet: Learning on real-world computing architectures. In: ESANN
30.
go back to reference Noor MHM, Salcic Z, Kevin I, Wang K (2017) Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer. Pervasive and Mobile Computing 38:41–59CrossRef Noor MHM, Salcic Z, Kevin I, Wang K (2017) Adaptive sliding window segmentation for physical activity recognition using a single tri-axial accelerometer. Pervasive and Mobile Computing 38:41–59CrossRef
31.
go back to reference Lee Y-S, Cho S-B (2014) Activity recognition with android phone using mixture-of-experts co-trained with labeled and unlabeled data. Neurocomputing 126:106–115CrossRef Lee Y-S, Cho S-B (2014) Activity recognition with android phone using mixture-of-experts co-trained with labeled and unlabeled data. Neurocomputing 126:106–115CrossRef
32.
go back to reference Chen Z, Zhu Q, Soh YC, Zhang L (2017) Robust human activity recognition using smartphone sensors via ct-pca and online svm. IEEE Transactions on Industrial Informatics 13(6):3070– 3080CrossRef Chen Z, Zhu Q, Soh YC, Zhang L (2017) Robust human activity recognition using smartphone sensors via ct-pca and online svm. IEEE Transactions on Industrial Informatics 13(6):3070– 3080CrossRef
33.
go back to reference Cao L, Wang Y, Zhang B, Jin Q, Vasilakos AV (2018) Gchar: An efficient group-based context—aware human activity recognition on smartphone. Journal of Parallel and Distributed Computing 118:67–80CrossRef Cao L, Wang Y, Zhang B, Jin Q, Vasilakos AV (2018) Gchar: An efficient group-based context—aware human activity recognition on smartphone. Journal of Parallel and Distributed Computing 118:67–80CrossRef
34.
go back to reference Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing. Springer, pp 1–17 Bao L, Intille SS (2004) Activity recognition from user-annotated acceleration data. In: International Conference on Pervasive Computing. Springer, pp 1–17
35.
go back to reference Wu W, Dasgupta S, Ramirez EE, Peterson C, Norman GJ (2012) Classification accuracies of physical activities using smartphone motion sensors. Journal of Medical Internet Research 14(5):e130CrossRef Wu W, Dasgupta S, Ramirez EE, Peterson C, Norman GJ (2012) Classification accuracies of physical activities using smartphone motion sensors. Journal of Medical Internet Research 14(5):e130CrossRef
36.
go back to reference Zhao Y, Li H, Wan S, Sekuboyina A, Hu X, Tetteh G, Piraud M, Menze B (2019) Knowledge-aided convolutional neural network for small organ segmentation. IEEE Journal of Biomedical and Health Informatics Zhao Y, Li H, Wan S, Sekuboyina A, Hu X, Tetteh G, Piraud M, Menze B (2019) Knowledge-aided convolutional neural network for small organ segmentation. IEEE Journal of Biomedical and Health Informatics
38.
go back to reference Xu X, Xue Y, Qi L, Yuan Y, Zhang X, Umer T, Wan S (2019) An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Generation Computer Systems 96:89–100CrossRef Xu X, Xue Y, Qi L, Yuan Y, Zhang X, Umer T, Wan S (2019) An edge computing-enabled computation offloading method with privacy preservation for internet of connected vehicles. Future Generation Computer Systems 96:89–100CrossRef
39.
go back to reference Li W, Liu X, Liu J, Chen P, Wan S, Cui X (2019) On improving the accuracy with auto-encoder on conjunctivitis. Applied Soft Computing, p 105489 Li W, Liu X, Liu J, Chen P, Wan S, Cui X (2019) On improving the accuracy with auto-encoder on conjunctivitis. Applied Soft Computing, p 105489
40.
go back to reference Reyes-Ortiz J-L, Oneto L, Samà A, Parra X, Anguita D (2016) Transition-aware human activity recognition using smartphones. Neurocomputing 171:754–767CrossRef Reyes-Ortiz J-L, Oneto L, Samà A, Parra X, Anguita D (2016) Transition-aware human activity recognition using smartphones. Neurocomputing 171:754–767CrossRef
41.
go back to reference Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter 12(2):74–82CrossRef Kwapisz JR, Weiss GM, Moore SA (2011) Activity recognition using cell phone accelerometers. ACM SigKDD Explorations Newsletter 12(2):74–82CrossRef
42.
go back to reference Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2012) Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International workshop on ambient assisted living, Springer, pp 216– 223 Anguita D, Ghio A, Oneto L, Parra X, Reyes-Ortiz JL (2012) Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: International workshop on ambient assisted living, Springer, pp 216– 223
44.
go back to reference Chen Y, Shen C (2017) Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access 5:3095–3110CrossRef Chen Y, Shen C (2017) Performance analysis of smartphone-sensor behavior for human activity recognition. IEEE Access 5:3095–3110CrossRef
Metadata
Title
Deep Learning Models for Real-time Human Activity Recognition with Smartphones
Authors
Shaohua Wan
Lianyong Qi
Xiaolong Xu
Chao Tong
Zonghua Gu
Publication date
30-12-2019
Publisher
Springer US
Published in
Mobile Networks and Applications / Issue 2/2020
Print ISSN: 1383-469X
Electronic ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-019-01445-x

Other articles of this Issue 2/2020

Mobile Networks and Applications 2/2020 Go to the issue