Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 5/2021

16-04-2021 | Original Article

Deep learning to segment pelvic bones: large-scale CT datasets and baseline models

Authors: Pengbo Liu, Hu Han, Yuanqi Du, Heqin Zhu, Yinhao Li, Feng Gu, Honghu Xiao, Jun Li, Chunpeng Zhao, Li Xiao, Xinbao Wu, S. Kevin Zhou

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose:

Pelvic bone segmentation in CT has always been an essential step in clinical diagnosis and surgery planning of pelvic bone diseases. Existing methods for pelvic bone segmentation are either hand-crafted or semi-automatic and achieve limited accuracy when dealing with image appearance variations due to the multi-site domain shift, the presence of contrasted vessels, coprolith and chyme, bone fractures, low dose, metal artifacts, etc. Due to the lack of a large-scale pelvic CT dataset with annotations, deep learning methods are not fully explored.

Methods:

In this paper, we aim to bridge the data gap by curating a large pelvic CT dataset pooled from multiple sources, including 1184 CT volumes with a variety of appearance variations. Then, we propose for the first time, to the best of our knowledge, to learn a deep multi-class network for segmenting lumbar spine, sacrum, left hip, and right hip, from multiple-domain images simultaneously to obtain more effective and robust feature representations. Finally, we introduce a post-processor based on the signed distance function (SDF).

Results:

Extensive experiments on our dataset demonstrate the effectiveness of our automatic method, achieving an average Dice of 0.987 for a metal-free volume. SDF post-processor yields a decrease of 15.1% in Hausdorff distance compared with traditional post-processor.

Conclusion:

We believe this large-scale dataset will promote the development of the whole community and open source the images, annotations, codes, and trained baseline models at https://​github.​com/​ICT-MIRACLE-lab/​CTPelvic1K.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aguirre-Ramos H, Avina-Cervantes JG, Cruz-Aceves I (2016) Automatic bone segmentation by a gaussian modeled threshold. In: AIP Conference Proceedings, vol. 1747, p. 090009. AIP Publishing LLC Aguirre-Ramos H, Avina-Cervantes JG, Cruz-Aceves I (2016) Automatic bone segmentation by a gaussian modeled threshold. In: AIP Conference Proceedings, vol. 1747, p. 090009. AIP Publishing LLC
2.
go back to reference Barratt RC, Bernard J, Mundy AR, Greenwell TJ (2018) Pelvic fracture urethral injury in males-mechanisms of injury, management options and outcomes. Trans Androl Urol 7(Suppl 1):S29CrossRef Barratt RC, Bernard J, Mundy AR, Greenwell TJ (2018) Pelvic fracture urethral injury in males-mechanisms of injury, management options and outcomes. Trans Androl Urol 7(Suppl 1):S29CrossRef
4.
go back to reference Chandar KP, Satyasavithri T (2016) Segmentation and 3d visualization of pelvic bone from CT scan images. In: IACC, pp. 430–433. IEEE Chandar KP, Satyasavithri T (2016) Segmentation and 3d visualization of pelvic bone from CT scan images. In: IACC, pp. 430–433. IEEE
5.
go back to reference Chen C, Zheng G (2013) Fully automatic segmentation of AP pelvis x-rays via random forest regression and hierarchical sparse shape composition. In: International conference on computer analysis of images and patterns, pp. 335–343. Springer Chen C, Zheng G (2013) Fully automatic segmentation of AP pelvis x-rays via random forest regression and hierarchical sparse shape composition. In: International conference on computer analysis of images and patterns, pp. 335–343. Springer
6.
go back to reference Chen LC, Zhu Y, Papandreou G, Schroff F, Adam, H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818 Chen LC, Zhu Y, Papandreou G, Schroff F, Adam, H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV, pp. 801–818
7.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp. 424–432. Springer Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: MICCAI, pp. 424–432. Springer
8.
go back to reference Ding F, Leow WK, Howe TS (2007) Automatic segmentation of femur bones in anterior-posterior pelvis x-ray images. In: International conference on computer analysis of images and patterns, pp. 205–212. Springer Ding F, Leow WK, Howe TS (2007) Automatic segmentation of femur bones in anterior-posterior pelvis x-ray images. In: International conference on computer analysis of images and patterns, pp. 205–212. Springer
9.
go back to reference Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC (2018) Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging 37(8):1822–1834CrossRef Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC (2018) Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging 37(8):1822–1834CrossRef
10.
go back to reference Guo Q, Zhang L, Zhou S, Zhang Z, Liu H, Zhang L, Talmy T, Li Y (2020) Clinical features and risk factors for mortality in patients with open pelvic fracture: a retrospective study of 46 cases. J Orthop Surg 28(2):2309499020939830CrossRef Guo Q, Zhang L, Zhou S, Zhang Z, Liu H, Zhang L, Talmy T, Li Y (2020) Clinical features and risk factors for mortality in patients with open pelvic fracture: a retrospective study of 46 cases. J Orthop Surg 28(2):2309499020939830CrossRef
11.
go back to reference Haas B, Coradi T, Scholz M, Kunz P, Huber M, Oppitz U, Andre L, Lengkeek V, Huyskens D, Van Esch A, Reddick R (2008) Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys Med Biol 53(6):1751CrossRef Haas B, Coradi T, Scholz M, Kunz P, Huber M, Oppitz U, Andre L, Lengkeek V, Huyskens D, Van Esch A, Reddick R (2008) Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Phys Med Biol 53(6):1751CrossRef
12.
go back to reference Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H, Rosenberg J, Blake P, Rengel Z, Oestreich M, Dean J, Tradewell M, Shah A, Tejpaul R, Edgerton Z, Peterson M, Raza S, Regmi S, Papanikolopoulos N, Weight C (2019) The kits19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv:1904.00445 Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H, Rosenberg J, Blake P, Rengel Z, Oestreich M, Dean J, Tradewell M, Shah A, Tejpaul R, Edgerton Z, Peterson M, Raza S, Regmi S, Papanikolopoulos N, Weight C (2019) The kits19 challenge data: 300 kidney tumor cases with clinical context, CT semantic segmentations, and surgical outcomes. arXiv:​1904.​00445
13.
go back to reference Hemke R, Buckless CG, Tsao A, Wang B, Torriani M (2020) Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skelet Radiol 49(3):387–395CrossRef Hemke R, Buckless CG, Tsao A, Wang B, Torriani M (2020) Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment. Skelet Radiol 49(3):387–395CrossRef
14.
go back to reference Isensee F, Jäger PF, Kohl SA, Petersen J, Maier-Hein KH (2019) Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:1904.08128 Isensee F, Jäger PF, Kohl SA, Petersen J, Maier-Hein KH (2019) Automated design of deep learning methods for biomedical image segmentation. arXiv preprint arXiv:​1904.​08128
15.
go back to reference Johnson CD, Chen MH, Toledano AY, Heiken JP, Dachman A, Kuo MD, Menias CO, Siewert B, Cheema JI, Obregon RG, Fidler JL, Zimmerman P, Horton KM, Coakley K, Iyer RB, Hara AK, Halvorsen RA, Casola G, Yee J, Herman BA, Burgart LJ, Limburg PJ (2008) Accuracy of CT colonography for detection of large adenomas and cancers. N. Engl J Med 359(12):1207–1217CrossRef Johnson CD, Chen MH, Toledano AY, Heiken JP, Dachman A, Kuo MD, Menias CO, Siewert B, Cheema JI, Obregon RG, Fidler JL, Zimmerman P, Horton KM, Coakley K, Iyer RB, Hara AK, Halvorsen RA, Casola G, Yee J, Herman BA, Burgart LJ, Limburg PJ (2008) Accuracy of CT colonography for detection of large adenomas and cancers. N. Engl J Med 359(12):1207–1217CrossRef
16.
go back to reference Kainmueller D, Lamecker H, Zachow S, Hege H.C (2008) Coupling deformable models for multi-object segmentation. In: ISBI,. Springer, pp 69–78 Kainmueller D, Lamecker H, Zachow S, Hege H.C (2008) Coupling deformable models for multi-object segmentation. In: ISBI,. Springer, pp 69–78
17.
go back to reference Kotlarsky P, Haber R, Bialik V, Eidelman M (2015) Developmental dysplasia of the hip: What has changed in the last 20 years? World J Orthop 6(11):886CrossRef Kotlarsky P, Haber R, Bialik V, Eidelman M (2015) Developmental dysplasia of the hip: What has changed in the last 20 years? World J Orthop 6(11):886CrossRef
18.
go back to reference Lamecker H, Seebass M, Hege HC, Deuflhard P (2004) A 3D statistical shape model of the pelvic bone for segmentation. Int Soc Opt Photonics 5370:1341–1351 Lamecker H, Seebass M, Hege HC, Deuflhard P (2004) A 3D statistical shape model of the pelvic bone for segmentation. Int Soc Opt Photonics 5370:1341–1351
19.
go back to reference Lee PY, Lai JY, Hu YS, Huang CY, Tsai YC, Ueng WD (2012) Virtual 3D planning of pelvic fracture reduction and implant placement. Biomed Eng Appl Basis Commun 24(03):245–262CrossRef Lee PY, Lai JY, Hu YS, Huang CY, Tsai YC, Ueng WD (2012) Virtual 3D planning of pelvic fracture reduction and implant placement. Biomed Eng Appl Basis Commun 24(03):245–262CrossRef
20.
go back to reference Lindner C, Thiagarajah S, Wilkinson JM, Consortium a, Wallis GA, Cootes TF (2012) Accurate fully automatic femur segmentation in pelvic radiographs using regression voting. In: MICCAI, pp. 353–360. Springer Lindner C, Thiagarajah S, Wilkinson JM, Consortium a, Wallis GA, Cootes TF (2012) Accurate fully automatic femur segmentation in pelvic radiographs using regression voting. In: MICCAI, pp. 353–360. Springer
21.
go back to reference Lindner C, Thiagarajah S, Wilkinson JM, Wallis GA, Cootes TF (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans Med Imag 32(8):1462–1472 Lindner C, Thiagarajah S, Wilkinson JM, Wallis GA, Cootes TF (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans Med Imag 32(8):1462–1472
22.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440
23.
go back to reference Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiati Oncol Biol Phys 68(2):592–600 Pasquier D, Lacornerie T, Vermandel M, Rousseau J, Lartigau E, Betrouni N (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiati Oncol Biol Phys 68(2):592–600
24.
go back to reference Perera S, Barnes N, He X, Izadi S, Kohli P, Glocker B (2015) Motion segmentation of truncated signed distance function based volumetric surfaces. In: WACV, pp. 1046–1053. IEEE Perera S, Barnes N, He X, Izadi S, Kohli P, Glocker B (2015) Motion segmentation of truncated signed distance function based volumetric surfaces. In: WACV, pp. 1046–1053. IEEE
25.
go back to reference Philbrick KA, Weston AD, Akkus Z, Kline TL, Korfiatis P, Sakinis T, Kostandy P, Boonrod A, Zeinoddini A, Takahashi N, Erickson BJ (2019) Ril-contour: a medical imaging dataset annotation tool for and with deep learning. Jf Digit Imaging 32(4):571–581CrossRef Philbrick KA, Weston AD, Akkus Z, Kline TL, Korfiatis P, Sakinis T, Kostandy P, Boonrod A, Zeinoddini A, Takahashi N, Erickson BJ (2019) Ril-contour: a medical imaging dataset annotation tool for and with deep learning. Jf Digit Imaging 32(4):571–581CrossRef
26.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: MICCAI. Springer, pp 234–241
27.
go back to reference Seim H, Kainmueller D, Heller M, Lamecker H, Zachow S, Hege HC (2008) Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. VCBM 8:93–100 Seim H, Kainmueller D, Heller M, Lamecker H, Zachow S, Hege HC (2008) Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. VCBM 8:93–100
28.
go back to reference Simpson AL, Antonelli M, Bakas S, Bilello M, Farahani K, Van Ginneken B, Kopp-Schneider A, Landman BA, Litjens G, Menze B, Ronneberger O, Summers RM, Bilic P, Christ PF, Do RK, Gollub M, Golia-Pernicka J, Heckers SH, Jarnagin WR, McHugo MK, Napel S, Vorontsov E, Maier-Hein L, Cardoso MJ (2019) A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv:1902.09063 Simpson AL, Antonelli M, Bakas S, Bilello M, Farahani K, Van Ginneken B, Kopp-Schneider A, Landman BA, Litjens G, Menze B, Ronneberger O, Summers RM, Bilic P, Christ PF, Do RK, Gollub M, Golia-Pernicka J, Heckers SH, Jarnagin WR, McHugo MK, Napel S, Vorontsov E, Maier-Hein L, Cardoso MJ (2019) A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv:​1902.​09063
29.
go back to reference Truc PT, Lee S, Kim TS (2008) A density distance augmented chan-vese active contour for CT bone segmentation. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 482–485. IEEE Truc PT, Lee S, Kim TS (2008) A density distance augmented chan-vese active contour for CT bone segmentation. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 482–485. IEEE
30.
go back to reference Vasilache S, Ward K, Cockrell C, Ha J, Najarian K (2009) Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images. BMC Med Inf Decis Mak 9(1):1–8CrossRef Vasilache S, Ward K, Cockrell C, Ha J, Najarian K (2009) Unified wavelet and gaussian filtering for segmentation of CT images; application in segmentation of bone in pelvic CT images. BMC Med Inf Decis Mak 9(1):1–8CrossRef
31.
go back to reference Wu J, Hargraves RH, Najarian K, Belle A, Ward KR (2016) Segmentation and fracture detection in CT images. US Patent 9,480,439 Wu J, Hargraves RH, Najarian K, Belle A, Ward KR (2016) Segmentation and fracture detection in CT images. US Patent 9,480,439
32.
go back to reference Yu H, Wang H, Shi Y, Xu K, Yu X, Cao Y (2018) The segmentation of bones in pelvic CT images based on extraction of key frames. BMC Med Imaging 18(1):18CrossRef Yu H, Wang H, Shi Y, Xu K, Yu X, Cao Y (2018) The segmentation of bones in pelvic CT images based on extraction of key frames. BMC Med Imaging 18(1):18CrossRef
33.
go back to reference Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: CVPR, pp. 2881–2890 Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: CVPR, pp. 2881–2890
34.
go back to reference Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proceedings of the IEEE Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proceedings of the IEEE
35.
go back to reference Zhou SK, Rueckert D, Fichtinger G (2019) Handbook of medical image computing and computer assisted intervention. Academic Press, Cambridge Zhou SK, Rueckert D, Fichtinger G (2019) Handbook of medical image computing and computer assisted intervention. Academic Press, Cambridge
36.
go back to reference Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI, pp. 222–230. Springer Zhou Y, Xie L, Fishman EK, Yuille AL (2017) Deep supervision for pancreatic cyst segmentation in abdominal CT scans. In: MICCAI, pp. 222–230. Springer
Metadata
Title
Deep learning to segment pelvic bones: large-scale CT datasets and baseline models
Authors
Pengbo Liu
Hu Han
Yuanqi Du
Heqin Zhu
Yinhao Li
Feng Gu
Honghu Xiao
Jun Li
Chunpeng Zhao
Li Xiao
Xinbao Wu
S. Kevin Zhou
Publication date
16-04-2021
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 5/2021
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-021-02363-8

Other articles of this Issue 5/2021

International Journal of Computer Assisted Radiology and Surgery 5/2021 Go to the issue

Premium Partner