Skip to main content
Top

2023 | OriginalPaper | Chapter

Deep Multi Agent Reinforcement Learning Based Decentralized Swarm UAV Control Framework for Persistent Surveillance

Authors : Vishnu Kumar Kaliappan, Tuan Anh Nguyen, Sang Woo Jeon, Jae-Woo Lee, Dugki Min

Published in: The Proceedings of the 2021 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2021), Volume 2

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, enhancing intelligence in the development of Unmanned Aerial Vehicles (UAVs) with a decrease in cost for the application of swarm fleets has attracted a variety of interest. Specifically, for urban applications such as public transportation, logistics mobilization, rescue operations, etc., there is a need for a fleet of UAVs to plan and coordinate intelligently without human intervention. A multi-agent reinforcement learning framework that can learn and make policies for such systems is desperately needed. This paper proposes an AI-based Bio-inspired Decentralized Multi-Agent Reinforcement Learning (B-DMARL) framework as a multi-agent actor-critic model for executing an assigned job in an increasingly dynamic environment. The B-DMARL is a distributed control architecture with two levels. For group coordination and collision avoidance, low-level control is developed using an AI-based bio-inspired steering behavior algorithm. Using a Proximal Policy Optimization (PPO) based reinforcement learning method, the agent is trained as a high-level control to correctly execute tasks in more dynamic environments. In a virtual simulation environment, the proposed B-DMARL framework is applied to persistent surveillance tasks that require the cooperation and collaboration of UAVs. Simulation results demonstrate that the proposed methods have an improved learning rate and reward signal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mohamed N, Al-Jaroodi J, Jawhar I, Idries A, Mohammed F (2020) Unmanned aerial vehicles applications in future smart cities. Technol Forecast Soc Change 153:119293 Mohamed N, Al-Jaroodi J, Jawhar I, Idries A, Mohammed F (2020) Unmanned aerial vehicles applications in future smart cities. Technol Forecast Soc Change 153:119293
2.
go back to reference Silva C, Johnson W, Antcliff KR, Patterson MD (2018) VTOL urban air mobility concept vehicles for technology development. In: 2018 Aviation Technology, Integration, and Operations Conference Silva C, Johnson W, Antcliff KR, Patterson MD (2018) VTOL urban air mobility concept vehicles for technology development. In: 2018 Aviation Technology, Integration, and Operations Conference
3.
go back to reference Song BD, Park K, Kim J (2018) Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput Ind Eng 120:418–428CrossRef Song BD, Park K, Kim J (2018) Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput Ind Eng 120:418–428CrossRef
4.
go back to reference Lei L, Shen G, Zhang L, Li Z (2021) Toward intelligent cooperation of UAV swarms: when machine learning meets digital twin. IEEE Netw 35(1):386–392CrossRef Lei L, Shen G, Zhang L, Li Z (2021) Toward intelligent cooperation of UAV swarms: when machine learning meets digital twin. IEEE Netw 35(1):386–392CrossRef
5.
go back to reference Xu C, Zhang K, Song H (2020) UAV swarm communication aware formation control via deep Q network. In: 2020 IEEE 39th International Performance Computing and Communications Conference, IPCCC 2020 Xu C, Zhang K, Song H (2020) UAV swarm communication aware formation control via deep Q network. In: 2020 IEEE 39th International Performance Computing and Communications Conference, IPCCC 2020
6.
go back to reference Chen YJ, Chang DK, Zhang C (2020) Autonomous tracking using a swarm of UAVs: a constrained multi-agent reinforcement learning approach. IEEE Trans Veh Technol 69(11):13702–13717CrossRef Chen YJ, Chang DK, Zhang C (2020) Autonomous tracking using a swarm of UAVs: a constrained multi-agent reinforcement learning approach. IEEE Trans Veh Technol 69(11):13702–13717CrossRef
7.
go back to reference Mou Z, Zhang Y, Gao F, Wang H, Zhang T, Han Z (2021) Deep reinforcement learning based three-dimensional area coverage with UAV swarm. IEEE J Sel Areas Commun 39(10):3160–3176CrossRef Mou Z, Zhang Y, Gao F, Wang H, Zhang T, Han Z (2021) Deep reinforcement learning based three-dimensional area coverage with UAV swarm. IEEE J Sel Areas Commun 39(10):3160–3176CrossRef
8.
go back to reference Rashid T, Samvelyan M, De Witt CS, Farquhar G, Foerster J, Whiteson S (2018) QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. In: 35th International Conference on Machine Learning, ICML 2018 Rashid T, Samvelyan M, De Witt CS, Farquhar G, Foerster J, Whiteson S (2018) QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. In: 35th International Conference on Machine Learning, ICML 2018
9.
go back to reference Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. arXiv Prepr. 2017;(1707). Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. arXiv Prepr. 2017;(1707).
10.
go back to reference Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21(4):25–34CrossRef Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Comput Graph 21(4):25–34CrossRef
11.
go back to reference Aydin ME, Fellows R (2018) Building collaboration in multi-agent systems using reinforcement learning. In: Nguyen N, Pimenidis E, Khan Z, Trawiński B (eds) Computational Collective Intelligence. ICCCI 2018. LNCS, vol 11056, pp 201–212. Springer, Cham. https://doi.org/10.1007/978-3-319-98446-9_19 Aydin ME, Fellows R (2018) Building collaboration in multi-agent systems using reinforcement learning. In: Nguyen N, Pimenidis E, Khan Z, Trawiński B (eds) Computational Collective Intelligence. ICCCI 2018. LNCS, vol 11056, pp 201–212. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-319-98446-9_​19
12.
go back to reference Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, pp 1942–1948 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, pp 1942–1948
13.
go back to reference Sunehag P et al (2017) Value-Decomposition networks for cooperative multi-agent learning. arXiv. 2017 Sunehag P et al (2017) Value-Decomposition networks for cooperative multi-agent learning. arXiv. 2017
14.
go back to reference Foerster JN, Assael YM, de Freitas N, Whiteson S (2016) Learning to communicate to solve riddles with deep distributed recurrent q-networks. arXiv Prepr arXiv. 2016;1602.02672. Foerster JN, Assael YM, de Freitas N, Whiteson S (2016) Learning to communicate to solve riddles with deep distributed recurrent q-networks. arXiv Prepr arXiv. 2016;1602.02672.
15.
go back to reference Foerster J et al (2017) Stabilising experience replay for deep multi-agent reinforcement learning. In: 34th International Conference on Machine Learning, ICML 2017 Foerster J et al (2017) Stabilising experience replay for deep multi-agent reinforcement learning. In: 34th International Conference on Machine Learning, ICML 2017
16.
go back to reference Zhang K, Yang Z, Liu H, Zhang T, Başar T (2018) Fully decentralized multi-agent reinforcement learning with networked agents. In: 35th International Conference on Machine Learning, ICML 2018 Zhang K, Yang Z, Liu H, Zhang T, Başar T (2018) Fully decentralized multi-agent reinforcement learning with networked agents. In: 35th International Conference on Machine Learning, ICML 2018
17.
go back to reference Wang T, Qin R, Chen Y, Snoussi H, Choi C (2019) A reinforcement learning approach for UAV target searching and tracking. Multimed Tools Appl 78(4):4347–4364CrossRef Wang T, Qin R, Chen Y, Snoussi H, Choi C (2019) A reinforcement learning approach for UAV target searching and tracking. Multimed Tools Appl 78(4):4347–4364CrossRef
18.
go back to reference Pham HX, La HM, Feil-Seifer D, Nefian A (2018) Cooperative and distributed reinforcement learning of drones for field coverage. arXiv Prepr arXiv. 2018;1803.07250 Pham HX, La HM, Feil-Seifer D, Nefian A (2018) Cooperative and distributed reinforcement learning of drones for field coverage. arXiv Prepr arXiv. 2018;1803.07250
19.
go back to reference Azar AT et al (2021) Drone deep reinforcement learning: a review. Electronics (Switzerland) 10:999 Azar AT et al (2021) Drone deep reinforcement learning: a review. Electronics (Switzerland) 10:999
20.
go back to reference Yun WJ, Jung S, Kim J, Kim JH (2021) Distributed deep reinforcement learning for autonomous aerial eVTOL mobility in drone taxi applications. ICT Express 7(1):1–4CrossRef Yun WJ, Jung S, Kim J, Kim JH (2021) Distributed deep reinforcement learning for autonomous aerial eVTOL mobility in drone taxi applications. ICT Express 7(1):1–4CrossRef
21.
go back to reference Liu Y, Liu H, Tian Y, Sun C (2020) Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerosp Sci Technol 98:105671 Liu Y, Liu H, Tian Y, Sun C (2020) Reinforcement learning based two-level control framework of UAV swarm for cooperative persistent surveillance in an unknown urban area. Aerosp Sci Technol 98:105671
22.
go back to reference Kaliappan VK, Yong H, Min D, Budiyono A (2011) Behavior-based decentralized approach for cooperative control of a multiple small scale unmanned helicopter. In: International Conference on Intelligent Systems Design and Applications, ISDA Kaliappan VK, Yong H, Min D, Budiyono A (2011) Behavior-based decentralized approach for cooperative control of a multiple small scale unmanned helicopter. In: International Conference on Intelligent Systems Design and Applications, ISDA
Metadata
Title
Deep Multi Agent Reinforcement Learning Based Decentralized Swarm UAV Control Framework for Persistent Surveillance
Authors
Vishnu Kumar Kaliappan
Tuan Anh Nguyen
Sang Woo Jeon
Jae-Woo Lee
Dugki Min
Copyright Year
2023
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2635-8_70

Premium Partner